Theoretical Chemistry Accounts

, 138:124 | Cite as

A comparative study to predict regioselectivity, electrophilicity and nucleophilicity with Fukui function and Hirshfeld charge

  • Bin Wang
  • Chunying Rong
  • Pratim K. Chattaraj
  • Shubin LiuEmail author
Regular Article
Part of the following topical collections:
  1. Chemical Concepts from Theory and Computation


Chemical reactivity properties such as regioselectivity, electrophilicity and nucleophilicity are important chemical concepts, yet their understanding and quantification are still far from being accomplished. Applying density functional theory (DFT) to appreciate these properties is one route to pursue in the literature. In this work, we present a comparative study to benchmark two approaches in DFT to predict regioselectivity, electrophilicity and nucleophilicity: one with the Hirshfeld charge and the other with the Fukui function. We also examine the impact of 15 different ways to compute atomic charges on the performance of their predictions about these chemical reactivity properties. Our results show that the Hirshfeld charge is able to reliably determine regioselectivity and simultaneously accurately quantify both electrophilicity and nucleophilicity. The Fukui function behaves reasonably well for the prediction of electrophilicity but performs poorly for nucleophilicity. Among all other atomic charges examined in this study, it is only the Voronoi deformation density charge that yields the similar result as the Hirshfeld charge. As the first systematic benchmark study in the literature to compare the two available approaches in DFT about reactivity predictions, this work should fill in the needed knowledge gap and provide an impetus for the future development of chemical reactivity theory using DFT language.


Density functional theory Fukui function Hirshfeld charge Electrophilicity Nucleophilicity 



C.R. acknowledges support from the National Natural Science Foundation of China (No. 21503076), Scientific Research Fund of Hunan Provincial Education Department (No. 17C0949) and Hunan Provincial Natural Science Foundation of China (Grant No. 2017JJ3201). P.K.C. would like to thank the DST, New Delhi for the J. C. Bose National Fellowship.


  1. 1.
    Parr RG, Szentpály LV, Liu S (1999) J Am Chem Soc 121(9):1922–1924Google Scholar
  2. 2.
    Jaramillo P, Pérez P, Contreras R, Tiznado W, Fuentealba P (2006) J Phys Chem A 110(26):8181–8187PubMedGoogle Scholar
  3. 3.
    Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101(5):520–534Google Scholar
  4. 4.
    Ayers PW, Anderson JSM, Rodriguez JI, Jawed Z (2005) Phys Chem Chem Phys 7(9):1918–1925PubMedGoogle Scholar
  5. 5.
    Chattaraj PK, Roy DR (2006) J Phys Chem A 110(40):11401–11403PubMedGoogle Scholar
  6. 6.
    Chattaraj PK (2001) J Phys Chem A 105(2):511–513Google Scholar
  7. 7.
    Smith MB, March J (2007) March’s advanced organic chemistry: reactions, mechanisms, and structure. Wiley, New YorkGoogle Scholar
  8. 8.
    Baldwin JE (1976) J Chem Soc. Chem Commun 18:734–736Google Scholar
  9. 9.
    Fürst A, Plattner PA (1949) Helv Chim Acta 32(1):275–283PubMedGoogle Scholar
  10. 10.
    Yang W, Parr RG (1985) Proc Nat Acad Sci USA 82(20):6723–6726PubMedGoogle Scholar
  11. 11.
    Geerlings P, De Proft F (2008) Phys Chem Chem Phys 10(21):3028–3042PubMedGoogle Scholar
  12. 12.
    Parr RG, Yang W (1984) J Am Chem Soc 106(14):4049–4050Google Scholar
  13. 13.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  14. 14.
    Nalewajski RF, Parr RG (2001) J Phys Chem A 105(31):7391–7400Google Scholar
  15. 15.
    Parr RG, Ayers PW, Nalewajski RF (2005) J Phys Chem A 109(17):3957–3959PubMedGoogle Scholar
  16. 16.
    Ayers PW (2006) Theor Chem Acc 115(5):370–378Google Scholar
  17. 17.
    Kullback S (2012) Information theory and statistics. Dover Publications, New YorkGoogle Scholar
  18. 18.
    Nalewajski RF (2006) Information theory of molecular systems. Elsevier Science, AmsterdamGoogle Scholar
  19. 19.
    Liu S, Rong C, Lu T (2014) J Phys Chem A 118(20):3698–3704PubMedGoogle Scholar
  20. 20.
    Mayr H, Patz M (1994) Angew Chem Int Ed 33(9):938–957Google Scholar
  21. 21.
    Mayr H, Bug T, Gotta MF, Hering N, Irrgang B, Janker B, Kempf B, Loos R, Ofial AR, Remennikov G, Schimmel H (2001) J Am Chem Soc 123(39):9500–9512PubMedGoogle Scholar
  22. 22.
    Lucius R, Loos R, Mayr H (2002) Angew Chem Int Ed 41(1):91–95Google Scholar
  23. 23.
    Mayr H, Kempf B, Ofial AR (2003) Acc Chem Res 36(1):66–77PubMedGoogle Scholar
  24. 24.
    Hirshfeld FL (1977) Theor Chim Acta 44(2):129–138Google Scholar
  25. 25.
    Fonseca Guerra C, Handgraaf J-W, Baerends EJ, Bickelhaupt FM (2004) J Comput Chem 25(2):189–210PubMedGoogle Scholar
  26. 26.
    Mulliken RS (1955) J Chem Phys 23(10):1833–1840Google Scholar
  27. 27.
    Mulliken RS (1955) J Chem Phys 23(10):1841–1846Google Scholar
  28. 28.
    Mulliken RS (1955) J Chem Phys 23(12):2338–2342Google Scholar
  29. 29.
    Bruhn G, Davidson ER, Mayer I, Clark AE (2006) Int J Quantum Chem 106(9):2065–2072Google Scholar
  30. 30.
    Ros P, Schuit G (1966) Theor Chim Acta 4(1):1–12Google Scholar
  31. 31.
    Stout E, Politzer P (1968) Theor Chim Acta 12(5):379–386Google Scholar
  32. 32.
    Bickelhaupt FM, Van Eikema Hommes NJR, Fonseca Guerra C, Baerends EJ (1996) Organometallics 15(13):2923–2931Google Scholar
  33. 33.
    Becke AD (1988) J Chem Phys 88(4):2547–2553Google Scholar
  34. 34.
    Lu T, Chen F (2012) J Theor Comput Chem 11(01):163–183Google Scholar
  35. 35.
    Breneman CM, Wiberg KB (1990) J Comput Chem 11(3):361–373Google Scholar
  36. 36.
    Besler BH, Merz KM Jr, Kollman PA (1990) J Comput Chem 11(4):431–439Google Scholar
  37. 37.
    Bader RFW (1985) Acc Chem Res 18(1):9–15Google Scholar
  38. 38.
    Bultinck P, Alsenoy CV, Ayers PW, Carbó-Dorca R (2007) J Chem Phys 126(14):144111PubMedGoogle Scholar
  39. 39.
    Marenich AV, Jerome SV, Cramer CJ, Truhlar DG (2012) J Chem Theor Comput 8(2):527–541Google Scholar
  40. 40.
    Mortier WJ, Van Genechten K, Gasteiger J (1985) J Am Chem Soc 107(4):829–835Google Scholar
  41. 41.
    Ayers PW, Levy M (2000) Theor Chem Acc 103(3):353–360Google Scholar
  42. 42.
    Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711PubMedGoogle Scholar
  43. 43.
    Bultinck P, Fias S, Alsenoy CV, Ayers PW, Carbo-Dora R (2007) J Chem Phys 127:034102PubMedGoogle Scholar
  44. 44.
    Miranda-Quintana RA (2016) Chem Phys Lett 658:328–330Google Scholar
  45. 45.
    Nalewajski RF (2000) Parr RG 97(16):8879–8882Google Scholar
  46. 46.
    Matta CF, Sichinga M, Ayers PW (2011) Chem Phys Lett 514(4):379–383Google Scholar
  47. 47.
    Rong C, Lu T, Liu SB (2014) J Chem Phys 140(2):024109PubMedGoogle Scholar
  48. 48.
    Cao X, Rong C, Zhong A, Lu T, Liu SB (2018) J Comput Chem 39(2):117–129PubMedGoogle Scholar
  49. 49.
    Liu SB, Liu L, Yu D, Rong C, Lu T (2018) Phys Chem Chem Phys 20(3):1408–1420PubMedGoogle Scholar
  50. 50.
    Liu SB, Rong C, Lu T, Hu H (2018) J Phys Chem A 122(11):3087–3095PubMedGoogle Scholar
  51. 51.
    Rong C, Zhao D, Yu D, Liu SB (2018) Phys Chem Chem Phys 20(26):17990–17998PubMedGoogle Scholar
  52. 52.
    Rong C, Zhao D, Zhou T, Liu S, Yu D, Liu SB (2019) J Phys Chem Lett 10(8):1716–1721PubMedGoogle Scholar
  53. 53.
    Liu S, Zhao D, Rong C, Lu T, Liu SB (2019) J Chem Phys 150(20):204106PubMedGoogle Scholar
  54. 54.
    Wang B, Yu D, Zhao D, Rong C, Liu SB (2019) Chem Phys Lett 730:451–459Google Scholar
  55. 55.
    Wu J, Yu D, Liu S, Rong C, Zhong A, Chattaraj PK, Liu SB (2019) J Phys Chem A 123(31):6751–6760PubMedGoogle Scholar
  56. 56.
    Xiao X, Cao X, Zhao D, Rong C, Liu S (2019) Acta Phys Chim Sin. CrossRefGoogle Scholar
  57. 57.
    Yu D, Rong C, Lu T, Chattaraj PK, De Proft F, Liu SB (2017) Phys Chem Chem Phys 19(28):18635–18645PubMedGoogle Scholar
  58. 58.
    Yu D, Rong C, Lu T, De Proft F, Liu SB (2018) ACS Omega 3(12):18370–18379PubMedPubMedCentralGoogle Scholar
  59. 59.
    Yu D, Rong C, Lu T, De Proft F, Liu SB (2018) Acta Phys-Chim Sin 34(6):639–649Google Scholar
  60. 60.
    Yu D, Stuyver T, Rong C, Alonso M, Lu T, De Proft F, Geerlings P, Liu SB (2019) Phys Chem Chem Phys 21(33):18195–18210PubMedGoogle Scholar
  61. 61.
    Zhao D, Liu S, Rong C, Zhong A, Liu SB (2018) ACS Omega 3(12):17986–17990PubMedPubMedCentralGoogle Scholar
  62. 62.
    Zhou T, Liu S, Yu D, Zhao D, Rong C, Liu SB (2019) Chem Phys Lett 716:192–198Google Scholar
  63. 63.
    Liu SB, Rong C, Lu T (2014) J Phys Chem A 118(20):3698–3704PubMedGoogle Scholar
  64. 64.
    Zhou X, Rong C, Lu T, Liu SB (2014) Acta Phys Chim Sin 30(11):2055–2062Google Scholar
  65. 65.
    Liu SB (2016) Acta Phys Chim Sin 32(1):98–118Google Scholar
  66. 66.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54(2):724–728Google Scholar
  67. 67.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120(1):215–241Google Scholar
  68. 68.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, Revision D.01, Gaussian Inc. Wallingford CTGoogle Scholar
  69. 69.
    Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24(6):669–681PubMedGoogle Scholar
  70. 70.
    Lu T, Chen F (2012) J Comput Chem 33(5):580–592PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringHunan Normal UniversityChangshaPeople’s Republic of China
  2. 2.Department of Chemistry and Center for Theoretical StudiesIndian Institute of TechnologyKharagpurIndia
  3. 3.Research Computing CenterUniversity of North CarolinaChapel HillUSA

Personalised recommendations