Advertisement

Relaxation of Kohn–Sham orbitals of organometallic complexes during the approach of a nucleophilic reactant (or an electron approach): the case of [sal(ph)en]2 Zn complexes

  • Walid Lamine
  • Salima Boughdiri
  • Lorraine Christ
  • Lynda Merzoud
  • Christophe MorellEmail author
  • Henry ChermetteEmail author
Regular Article
Part of the following topical collections:
  1. Chemical Concepts from Theory and Computation

Abstract

In a recent paper, the Lewis acidic character of a series of Zn-Sal(ph)en complexes was reviewed, using conceptual density functional theory descriptors to assess the acidic character. It was shown that the nature of the bridging diamine link in the Schiff base ligand controls this character that is mainly responsible for the coordination of the Zn2+, hence for the geometry of these complexes. However, the usual dual descriptor did exhibit significant weaknesses to retrieve the electrophilic part on the metal cation of the Zn-sal(ph)en complexes. Indeed, it is necessary to include the densities of the electronic excited states through the so-called state-specific dual descriptor. This procedure will allow us to recover successfully the appropriate reactivity of the studied complexes holding diamine bridges differing by flexible to semi-rigid and to rigid ranges. Nevertheless, the selection of the excited state allowing a meaningful description of the Lewis acidic is not a priori obtained from a direct identification of the Kohn–Sham (KS) orbitals involved in the excitation. The present work reports an analysis of the relaxation of the KS orbitals when a fraction of charge is added to a virtual orbital, and when an excitation is considered, while a fractional charge is transferred from an occupied orbital toward a virtual orbital.

Keywords

Zn2+ Salen Salphen Complex DFT Conceptual DFT Electronic relaxation 

Notes

Acknowledgements

The authors gratefully acknowledge the GENCI/CINES for HPC resources/computer time (Project cpt2130) and support from ANR Oxycat-CO2.

References

  1. 1.
    Lamine W, Boughdiri S, Christ L, Morell C, Chermette H (2019) J Comput Chem 40:717–725Google Scholar
  2. 2.
    Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry: principles of structure and reactivity. Harper Collins College Publishers, New YorkGoogle Scholar
  3. 3.
    Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205–212CrossRefGoogle Scholar
  4. 4.
    Kleij AW, Kuil M, Tooke DM, Lutz M, Spek AL, Reek JNH (2005) Chem Eur J 11:4743–4750CrossRefGoogle Scholar
  5. 5.
    Belmonte MM, Wezenberg SJ, Haak RM, Anselmo D, Escudero-Adán EC, Benet-Buchholz J, Kleij AW (2010) Dalton Trans 39:4541–4550CrossRefGoogle Scholar
  6. 6.
    Matalobos JS, García-Deibe AM, Fondo M, Navarro D, Bermejo MR (2004) Inorg Chem Commun 7:311–314CrossRefGoogle Scholar
  7. 7.
    Kleij AW, Kuil M, Lutz M, Tooke DM, Spek AL, Kamer PCJ, Van Leeuwen PWNM, Reek JNH (2006) Inorg Chim Acta 359:1807–1814CrossRefGoogle Scholar
  8. 8.
    Consiglio G, Oliveri IP, Punzo F, Thompson AL, Di Bella S, Failla S (2015) Dalton Trans 44:13040–13048CrossRefGoogle Scholar
  9. 9.
    Consiglio G, Oliveri IP, Failla S, Di Bella S (2016) Inorg Chem 55:10320–10328CrossRefGoogle Scholar
  10. 10.
    Mizukami S, Houjou H, Sugaya K, Koyama E, Tokuhisa H, Sasaki T, Kanesato M (2005) Chem Mater 17:50–56CrossRefGoogle Scholar
  11. 11.
    Lamine W, Boughdiri S, Jeanneau E, Sanglar C, Morell C, Christ L, Chermette H (2018) ChemPhysChem 19:2938–2946CrossRefGoogle Scholar
  12. 12.
    Forte G, Oliveri IP, Consiglio G, Failla S, Di Bella S (2017) Dalton Trans 46:4571–4581CrossRefGoogle Scholar
  13. 13.
    Chermette H (1999) J Comput Chem 20:129–154CrossRefGoogle Scholar
  14. 14.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873CrossRefGoogle Scholar
  15. 15.
    Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050CrossRefGoogle Scholar
  16. 16.
    Yang W, Parr RG, Pucci R (1984) J Chem Phys 81:2862–2863CrossRefGoogle Scholar
  17. 17.
    Perdew JP, Parr RG, Levy M, Balduz JLJ (1982) Phys Rev Lett 49:1691–1694CrossRefGoogle Scholar
  18. 18.
    Tognetti V, Morell C, Ayers PW, Joubert L, Chermette H (2013) Chem Chem Phys 15:14465CrossRefGoogle Scholar
  19. 19.
    Guégan F, Tognetti V, Joubert L, Chermette H, Luneau D, Morell C (2016) Phys Chem Chem Phys 18:982–990CrossRefGoogle Scholar
  20. 20.
    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967CrossRefGoogle Scholar
  21. 21.
    Baerends EJ, Ziegler T, Atkins AJ, Autschbach J, Bashford D, Baseggio O, Bérces A, Bickelhaupt FM, Bo C, Boerritger PM, Cavallo L, Daul C, Chong DP, Chulhai D V, Deng L, Dickson RM, Dieterich JM, Ellis DE, van Faassen M, Ghysels A, Giammona A, van Gisbergen SJA, Goez A, Götz AW, Gusarov S, Harris FE, van den Hoek P, Hu Z, Jacob CR, Jacobsen H, Jensen L, Joubert L, Kaminski JW, van Kessel G, König C, Kootstra F, Kovalenko A, Krykunov M, van Lenthe E, McCormack DA, Michalak A, Mitoraj M, Morton SM, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Pavanello M, Peeples CA, Philipsen PHT, Post D, Pye CC, Ramanantoanina H, Ramos P, Ravenek W, Rodríguez JI, Ros P, Rüger R, Schipper PRT, Schlüns D, van Schoot H, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Solà M, M. S, Swart M, Swerhone D, te Velde G, Tognetti V, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL ADF (2017) SCM, Theoretical chemistry. Vrije Universiteit, Amsterdam. https://www.scm.com
  22. 22.
    Chermette H (1982) unpublishedGoogle Scholar
  23. 23.
    Chermette H (1992) New J Chem 16:1081–1088Google Scholar
  24. 24.
    Gilbert ATB, Besley NA, Gill PMW (2008) J Phys Chem A 112:13164–13171CrossRefGoogle Scholar
  25. 25.
    Barca GMJ, Gilbert ATB, Gill PMW (2018) J Chem Theory Comput 14:1501–1509CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut des Sciences Analytiques, UMR CNRS 5280, Université Claude Bernard Lyon 1Université de LyonVilleurbanne CedexFrance
  2. 2.Faculté des Sciences de Tunis, UR11ES19 Unité de recherche Physico-Chimie des Matériaux CondensésUniversité de Tunis El ManarTunisTunisia
  3. 3.Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR CNRS 5256, Université Lyon 1Université de LyonVilleurbanne CedexFrance

Personalised recommendations