Advertisement

Theoretical Chemistry Accounts

, 138:123 | Cite as

Unravelling the mechanism and the origin of the selectivity of the [3 + 2] cycloaddition reaction between electrophilic nitrone and nucleophilic alkene

  • Fouad Chafaa
  • Abdelmalek Khorief NacereddineEmail author
  • Abdelhafid Djerourou
Regular Article
  • 44 Downloads

Abstract

In this paper, we have studied within the molecular electron density theory the mechanism and the origin of the selectivity of the [3 + 2] cycloaddition reaction between electrophilic nitrone 1 and nucleophilic alkene, indole 2, using DFT method at the B3LYP/6-31G(d) theoretical level. The obtained results clearly indicated that this reaction is characterised by an ortho regioselectivity and an exo stereoselectivity. Inclusion of the solvent effects does not modify the obtained gas-phase selectivities but slightly increase the activation energies. The analysis of the geometries of the transition states with bond order and global electron density transfer shows that this reaction takes place via a slightly asynchronous non-polar one-step mechanism. Analysis of the electronic structure of nitrone 1 indicates that this species has a zwitterionic-type structure that enables its participation in zw-type 32CA reactions. Conceptual DFT reactivity indices analysis confirms the highly obtained activation energies and local Parr functions analysis allows us to explain the ortho regioselectivity of this 32CA reaction. NCI, ESP and QTAIM analyses indicate that the presence of several conventional and non-conventional interactions at the structure of the most favourable approach orthoexo is the origin for the selectivity of this 32CA reaction.

Keywords

Mechanism Selectivity Cycloaddition DFT calculations ELF NCI QTAIM MEDT 

Notes

Acknowledgments

This work was supported by the Ministry of Higher Education and Scientific Research of the Algerian Government (project PRFU Code: B00L01UN230120180010).

Supplementary material

214_2019_2510_MOESM1_ESM.docx (82 kb)
Supplementary material 1 (DOCX 81 kb)

References

  1. 1.
    Cordell GA (2013) The alkaloids, chemistry and biology. Elsevier, Amsterdam, pp 1–348Google Scholar
  2. 2.
    Anderson RJ, Faulkner DJ, Chu-Heng H, Van Duyne GD, Clardy J (1985) J Am Chem Soc 107:5492Google Scholar
  3. 3.
    Copp BR, Ireland CM, Barrows LR (1991) J Org Chem 56:4596Google Scholar
  4. 4.
    Dua R, Shrivastava S, Sonwane SK, Srivastava SK (2011) Adv Biol Res 5(3):120–144Google Scholar
  5. 5.
    Gomtsyan A (2013) Chem Heterocycl Compd 1:12–15Google Scholar
  6. 6.
    Patterson W, Cheung PS, Ernest MJ (1992) J Med Chem 35:507PubMedGoogle Scholar
  7. 7.
    Wagner E, Becan L, Nowakowska E (2004) Bioorg Med Chem 12:265PubMedGoogle Scholar
  8. 8.
    Huisgen R (1984) In: Padwa A (ed) 1,3-Dipolar cycloaddition chemistry, vol 1. Wiley, New York, pp 42–47Google Scholar
  9. 9.
    Piotrowska Dorota G (2006) Tetrahedron Lett 47:5363Google Scholar
  10. 10.
    Sousa CAD, Vale MLC, Garcia-Mera X, Rodriguez-Borges JE (2012) Tetrahedron 68:1682Google Scholar
  11. 11.
    Saubern S, Macdonald JM, Ryan JH, Woodgate RCJ, Louie TS, Fuchter MJ, White JM, Holmes AB (2010) Tetrahedron 66:2761Google Scholar
  12. 12.
    Hellel D, Chafaa F, Nacereddine AK, Djerourou A, Vrancken E (2017) RSC Adv 7(48):30128–30141Google Scholar
  13. 13.
    Nacereddine AK, Yahia W, Bouacha S, Djerourou A (2010) Tetrahedron Lett 51:2617–2621Google Scholar
  14. 14.
    Nacereddine AK, Yahia W, Sobhi C, Djerourou A (2012) Tetrahedron Lett 53(43):5784–5786Google Scholar
  15. 15.
    Barama L, Bayoud B, Chafaa F, Nacereddine AK, Djerourou A (2018) Struct Chem 29(6):1709–1721Google Scholar
  16. 16.
    Yahia W, Khorief Nacereddine A, Liacha M, Djerourou A (2018) Int J Quantum Chem 118(11):e25540Google Scholar
  17. 17.
    Dmitriev VA, Efremova MM, Novikov AS, Zarubaev VV, Slita AV, Galochkina AV, Starova GL, Ivanov AV, Molchanov AP (2018) Tetrahedron Lett 59:2327–2331Google Scholar
  18. 18.
    Rios-Gutierrez M, Domingo LR (2019) Eur J Org Chem 2019:267Google Scholar
  19. 19.
    Domingo LR, Ríos-Gutiérrez M, Pérez P (2018) J Org Chem 83:2182PubMedGoogle Scholar
  20. 20.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F Jr, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox D (2009) Gaussian 09, Revision A.02. Gaussian, Wallingford, CTGoogle Scholar
  21. 21.
    Lee C, Yang W, Parr RG (1988) Phys Rev 37:785Google Scholar
  22. 22.
    Becke AD (1993) J Chem Phys 98:5648Google Scholar
  23. 23.
    Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  24. 24.
    Tomasi J, Persico M (1994) Chem Rev 94:2027Google Scholar
  25. 25.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899Google Scholar
  26. 26.
    Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735Google Scholar
  27. 27.
    Simkin BY, Sheikhet I (1995) Quantum chemical and statistical theory of solutions—computational approach. Ellis Horwood, LondonGoogle Scholar
  28. 28.
    Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032Google Scholar
  29. 29.
    Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327Google Scholar
  30. 30.
    Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404Google Scholar
  31. 31.
    Parr RG, von Szentpaly L, Liu S (1922) J Am Chem Soc 1999:121Google Scholar
  32. 32.
    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512Google Scholar
  33. 33.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  34. 34.
    Domingo LR, Chamorro E, Pérez P (2008) J Org Chem 73:4615PubMedGoogle Scholar
  35. 35.
    Domingo LR, Pérez P (2011) Org Biomol Chem 9:7168PubMedGoogle Scholar
  36. 36.
    Domingo LR, Pérez P, Sáez JA (2013) RSC Adv 3:1486Google Scholar
  37. 37.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen J, Yang AW (2010) J Am Chem Soc 132:6498PubMedPubMedCentralGoogle Scholar
  38. 38.
    Lane JR, Contreras-Garcia J, Piquemal JP, Miller BJ, Kjaergaard HGJ (2013) Chem Theory Comput 9:3263Google Scholar
  39. 39.
    Contreras-Garcia JE, Johnson R, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011) J Chem Theory Comput 7:625PubMedPubMedCentralGoogle Scholar
  40. 40.
    Murray JS, Politzer P (1998) In: Schleyer PVR (ed) Encyclopedia of computational chemistry. Wiley, West Sussex, pp 912–920Google Scholar
  41. 41.
    Bader RFW (1990) Atoms in molecules. A quantum theory. Claredon Press, OxfordGoogle Scholar
  42. 42.
    Lu T, Chen F (2012) J Comput Chem 33:580PubMedPubMedCentralGoogle Scholar
  43. 43.
    Domingo LR (2014) RSC Adv 4:32415–32428Google Scholar
  44. 44.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403Google Scholar
  45. 45.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612PubMedPubMedCentralGoogle Scholar
  46. 46.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873Google Scholar
  47. 47.
    Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Molecules 21:748PubMedCentralGoogle Scholar
  48. 48.
    Domingo LR (2016) Molecules 21:1319PubMedCentralGoogle Scholar
  49. 49.
    Domingo LR, Emamian SR (2014) Tetrahedron 70:1267Google Scholar
  50. 50.
    Domingo LR, Ríos-Gutiérrez M (2017) Molecules 22:750PubMedCentralGoogle Scholar
  51. 51.
    Ríos-Gutiérrez M, Darù A, Tejero T, Domingo LR, Merino P (2017) Org Biomol Chem 15:1618PubMedGoogle Scholar
  52. 52.
    Silvi B (2002) J Mol Struct 614:3Google Scholar
  53. 53.
    Lewis GN (1916) J Am Chem Soc 38:762Google Scholar
  54. 54.
    Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Tetrahedron 58:4417Google Scholar
  55. 55.
    Jaramillo P, Domingo LR, Chamorro E, Pérez P (2008) J Mol Struct (Theochem) 865:68Google Scholar
  56. 56.
    Domingo LR, Pérez P, Sáez JA (2012) Org Biomol Chem 10:3841PubMedGoogle Scholar
  57. 57.
    Benchouk W, Mekelleche SM, Silvi B, Aurell MJ, Domingo LR (2011) J Phys Org Chem 24:611Google Scholar
  58. 58.
    El Ayouchia HB, Bahsis L, Anane H, Domingo LR, Stiriba SE (2018) RSC Adv 8:7670–7678Google Scholar
  59. 59.
    Wiberg KB (1968) Tetrahedron 24:1083Google Scholar
  60. 60.
    Domingo LR, Aurell MJ, Pérez P (2014) Tetrahedron 70:4519Google Scholar
  61. 61.
    Ríos-Gutiérrez M, Nasri L, Khorief Nacereddine A, Djerourou A, Domingo LR (2018) J Phys Org Chem 31:e3830Google Scholar
  62. 62.
    Nasri L, Ríos-Gutiérrez M, Nacereddine AK, Djerourou A, Domingo LR (2017) Theor Chem Accounts 136:104Google Scholar
  63. 63.
    Nacereddine AK, Sobhi C, Djerourou A, Ríos-Gutiérrez M, Domingo LR (2015) RSC Adv 5:99299Google Scholar
  64. 64.
    Sobhi C, Khorief Nacereddine A, Djerourou A, Ríos-Gutiérrez M, Domingo LR (2017) J Phys Org Chem 30:e3637Google Scholar
  65. 65.
    Lachtar Z, Khorief Nacereddine A, Djerourou A (2019) Struct Chem.  https://doi.org/10.1007/s11224-019-01400-2 CrossRefGoogle Scholar
  66. 66.
    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154Google Scholar
  67. 67.
    Grabowski SJ, Sokalski WA, Dyguda E, Leszczynski J (2006) J Phys Chem B 110:6444PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Synthesis and Organic Biocatalysis Laboratory, Department of Chemistry, Faculty of SciencesBadji Mokhtar-Annaba UniversityAnnabaAlgeria
  2. 2.Department of Chemistry, Faculty of SciencesSaad Dahleb Blida 1 UniversityBlidaAlgeria
  3. 3.Department of Physics and ChemistryHigher Normal School of Technological Education-Skikda, City of Boucetta BrothersAzzabaAlgeria

Personalised recommendations