Theoretical Chemistry Accounts

, 138:120 | Cite as

Examination of the performance of semiempirical methods in QM/MM studies of the SN2-like reaction of an adenylyl group transfer catalysed by ANT4′

  • Sergio Martí
  • Vicent MolinerEmail author
  • Katarzyna ŚwiderekEmail author
Regular Article
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)


Quantum mechanical (QM) semiempirical methods (SMs), combined with molecular mechanics (MM) force fields, are extensively used in theoretical studies of enzymatic reactions. Despite being several orders of magnitude faster than ab initio methods, their correctness is essential to be used in calculations requiring statistical simulations. Herein, a wide range of SMs are examined, from those based on s and p orbitals, sp-SMs (MNDO, AM1, PM3 and RM1), to those including d orbitals, spd-SMs, either based on approximations to the Hartree–Fock theory (MNDO/d, PM6 and AM1/d-PhoT) or derived from density functional theory (DFTB3). These QM Hamiltonians are used within a multiscale QM/MM additive scheme, to clarify their usefulness in mechanistic studies of phosphoryl-transfer reactions. The SN2-like reaction of the adenylyl group transfer catalysed by 4′-O-Nucleotidyltransferase (ANT4′) was selected as a benchmark. Geometrical characteristics of stationary structures, the shape of potential energy surfaces together with the barrier heights and kinetic isotope effects (KIEs), obtained with the different SMs/MM methods were compared with results obtained at higher M06-2X/MM level of theory. Critical limitations of the sp-SMs in the present mechanistic study were detected. The spd-SMs describe the reaction as a concerted process, same as the reference method M06-2X, but none of them is free of limitations. PM6 reproduces the biased trend of previous sp-SMs stabilizing structures of phosphorous atoms with certain pentavalent character, while AM1/d-PhoT and DFTB3 describe TSs more dissociative than M06-2X, which determines the lower quality of the computed primary and secondary 16O/18O KIEs. Efforts to improve the SMs can be guided by the exposure of their limitations, which were supported by the results of a second studied phosphoryl-transfer reactions; the hydrolysis of phosphodiester bond at the 3′-end of the viral DNA (vDNA). Thus, for instance, further increases in SMs accuracy can be achieved by improving the training and survey reference data sets, a more complete set of parameters for describing intermolecular interactions or further developments of spd-SMs.


Adenylyl transfer Semiempirical methods M06-2X QM/MM Phosphate chemistry 



This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (Grant PGC2018-094852-B-C21), Universitat Jaume I (Project UJI B2017- 31). KŚ thanks the MINECO for a Juan de la Cierva—Incorporación (Ref. IJCI-2016-27503) contract. Authors acknowledge computational resources from the Servei d’Informàtica of Universitat Jaume I.

Supplementary material

214_2019_2507_MOESM1_ESM.docx (9.8 mb)
Supplementary material 1 (DOCX 10026 kb)


  1. 1.
    Masgrau L, Truhlar DG (2015) Acc Chem Res 48:431–438CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Świderek K, Tuñón I, Moliner V (2014) WIREs Comput Mol Sci 4:407–421CrossRefGoogle Scholar
  3. 3.
    Świderek K, Ruiz-Pernía JJ, Moliner V, Tuñón I (2014) Curr Opin Chem Biol 21:11–18CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mlyńsky V, Banaś P, Šponer J, van der Kamp MW, Mulholland AJ, Otyepka M (2014) J Chem Theory Comput 10:1608–1622CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Krzemińska A, Moliner V, Świderek K (2016) J Am Chem Soc 138:16283–16298CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Higashi M, Truhlar DG (2009) J Chem Theory Comput 5:2925–2929CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Singh UC, Kollman PA (1986) J Comput Chem 7:718–730CrossRefGoogle Scholar
  8. 8.
    Warshel A, Levitt M (1976) J Mol Biol 103:227–249CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Martí S, Andrés J, Moliner V, Silla E, Tuñón I, Bertrán J (2008) J Am Chem Soc 130:2894–2895CrossRefGoogle Scholar
  10. 10.
    Martí S, Andrés J, Moliner V, Silla E, Tuñón I, Bertrán J (2009) J Am Chem Soc 131:16156–16161CrossRefGoogle Scholar
  11. 11.
    Świderek K, Tuñón I, Williams IH, Moliner V (2018) J Am Chem Soc 140:4327–4334CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Świderek K, Martí S, Moliner V (2014) ACS Catal 4:426–434CrossRefGoogle Scholar
  13. 13.
    Świderek K, Tuñón I, Martí S, Moliner V (2015) ACS Catal 5:1172–1185CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Doron D, Major DT, Kohen A, Thiel W, Wu X (2011) J Chem Theory Comput 7:3420–3437CrossRefGoogle Scholar
  15. 15.
    Vardi-Kilshtain A, Major DT, Kohen A, Engel H, Doron D (2012) J Chem Theory Comput 8:4786–4796CrossRefGoogle Scholar
  16. 16.
    Major DT, Nam K, Gao J (2006) J Am Chem Soc 128:8114–8115CrossRefGoogle Scholar
  17. 17.
    Liu CT, Layfield JP, Stewart RJ III, French JB, Hanoian P, Asbury JB, Hammes-Schiffer S, Benkovic SJ (2014) J Am Chem Soc 136:10349–10360CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Świderek K, Arafet K, Kohen A, Moliner V (2017) J Chem Theory Comput 13:1375–1388CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lopez-Canut V, Roca M, Bertran J, Moliner V, Tuñón I (2011) J Am Chem Soc 133:12050–12062CrossRefGoogle Scholar
  20. 20.
    Christensen AS, Kubař T, Cui Q, Elstner M (2016) Chem Rev 116:5301–5337CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Petrovic D, Szeler K, Kamerlin SCL (2018) Chem Commun 54:3077–3089CrossRefGoogle Scholar
  22. 22.
    Bordes I, García-Junceda E, Sánchez-Moreno I, Castillo R, Moliner V (2017) Int J Quantum Chem 118:e25520CrossRefGoogle Scholar
  23. 23.
    Lopez-Canut V, Roca M, Bertran J, Moliner V, Tuñón I (2010) J Am Chem Soc 132:6955–6963CrossRefGoogle Scholar
  24. 24.
    Nam K, Cui Q, Gao J, York DM (2007) J Chem Theory Comput 3:486–504CrossRefGoogle Scholar
  25. 25.
    Arantes GM, Loos M (2006) Phys Chem Chem Phys 8:347–353CrossRefGoogle Scholar
  26. 26.
    Lopez X, York DM (2001) Theo Chem Acc 109:149–159CrossRefGoogle Scholar
  27. 27.
    Yang Y, Yu H, York D, Elstner M, Cui Q (2008) J Chem Theory Comput 4:2067–2084CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Marcos E, Anglada JM, Crehuet R (2008) Phys Chem Chem Phys 10:2442–2450CrossRefGoogle Scholar
  29. 29.
    Marcos E, Field MJ, Crehuet R (2010) Proteins 78:2405–2411PubMedGoogle Scholar
  30. 30.
    Murillo-López J, Zinovjev K, Pereira H, Caniuguir A, Garratt R, Babul J, Recabarren R, Alzate-Morales J, Caballero J, Tuñón I, Cabrera R (2019) Chem Sci 10:2882–2892CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899–4907CrossRefGoogle Scholar
  32. 32.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909CrossRefGoogle Scholar
  33. 33.
    Stewart JJP (1989) J Comput Chem 10:209–221CrossRefGoogle Scholar
  34. 34.
    Rocha GB, Oliveira Freire R, Simas AM, Stewart JJP (2006) J Comput Chem 27:1101–1111CrossRefGoogle Scholar
  35. 35.
    Thiel W, Voityuk AA (1992) Theor Chim Acta 81:391–404CrossRefGoogle Scholar
  36. 36.
    Thiel W, Voityuk AA (1996) J Phys Chem 100:616–626CrossRefGoogle Scholar
  37. 37.
    Bernal-Uruchurtu MI, Martins-Costa MTC, Millot C, Ruiz-López MF (2000) J Comput Chem 21:572–581CrossRefGoogle Scholar
  38. 38.
    Bernal-Uruchurtu MI, Ruiz-López MF (2000) Chem Phys Lett 330:118–124CrossRefGoogle Scholar
  39. 39.
    Harb W, Bernal-Uruchurtu MI, Ruiz-López MF (2004) Theor Chem Acc 112:204–216CrossRefGoogle Scholar
  40. 40.
    Arillo-Flores OI, Ruiz-López MF, Bernal-Uruchurtu MI (2007) Theor Chem Acc 118:425–435CrossRefGoogle Scholar
  41. 41.
    Stewart JJP (2007) J Mol Model 13:1173–1213CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Stewart JJP (2009) J Mol Model 15:765–805CrossRefGoogle Scholar
  43. 43.
    Marion A, Monard G, Ruiz-López MF, Ingrosso F (2014) J Chem Phys 141:034106CrossRefGoogle Scholar
  44. 44.
    Imhof P, Noé F, Fischer S, Smith JC (2006) J Chem Theory Comput 2:1050–1056CrossRefGoogle Scholar
  45. 45.
    Wahiduzzaman M, Oliveira AF, Philipsen P, Zhechkov L, van Lenthe E, Witek H, Heine T (2013) J Chem Theory Comput 9:4006–4017CrossRefGoogle Scholar
  46. 46.
    Gaus M, Lu X, Elstner M, Cui Q (2014) J Chem T Theory Comput 10:1518–1537CrossRefGoogle Scholar
  47. 47.
    Gaus M, Goez A, Elstner M (2013) J Chem Theory Comput 9:338–354CrossRefGoogle Scholar
  48. 48.
    Gaus M, Cui Q (2012) Elstner. J Chem Theory Comput 7:931–948CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Editorial (2013) The antibiotic alarm. Nature 495:141Google Scholar
  50. 50.
    Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F et al (2015) Nat Rev Microbiol 13:310–317CrossRefGoogle Scholar
  51. 51.
    Becker B, Matthew A (2013) ACS Chem Biol 8:105–115CrossRefGoogle Scholar
  52. 52.
    Martí S, Bastida A, Świderek K (2019) Front Chem 6:660CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167CrossRefGoogle Scholar
  54. 54.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  55. 55.
    Bordes I, Ruiz-Pernía JJ, Castillo R, Moliner V (2015) Org Biomol Chem 13:10179–10190CrossRefGoogle Scholar
  56. 56.
    Bordes I, Castillo R, Moliner V (2017) J Phys Chem B 121:8878–8892CrossRefGoogle Scholar
  57. 57.
    Pedersen LC, Benning MM, Holden HM (1995) Biochemistry 34:13305–13311CrossRefGoogle Scholar
  58. 58.
    Olsson MHM, Sondergaard CR, Rostkowski M, Jensen JH (2011) J Chem Theory Comput 7:525–537CrossRefGoogle Scholar
  59. 59.
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Kollman P et al (2003) J Comput Chem 24:1999–2012CrossRefGoogle Scholar
  60. 60.
    Field MJ, Albe M, Bret C, Proust-De Martin F, Thomas A (2000) J Comput Chem 21:1088–1100CrossRefGoogle Scholar
  61. 61.
    Krzemińska A, Paneth P, Moliner V, Świderek K (2015) J Phys Chem B 119:917–927CrossRefGoogle Scholar
  62. 62.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935CrossRefGoogle Scholar
  63. 63.
    Stewart JJP (1996) Quantum Chem Progr Exch 455:6Google Scholar
  64. 64.
    Case DA, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Luchko T, Luo R, Madej B, Mermelstein D, Merz KM, Monard G, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, Kollman PA (2016) AMBER 2016. University of California, San FranciscoGoogle Scholar
  65. 65.
    Byrd RH, Lu P, Nocedal J, Zhu C (1995) J Sci Comput 16:1190–1208Google Scholar
  66. 66.
    Baker J, Kessi A, Delley BJ (1996) Chem Phys 105:192–212Google Scholar
  67. 67.
    Baker J (1997) J Comput Chem 18:1079–1095CrossRefGoogle Scholar
  68. 68.
    Martí S, Moliner V, Tuñón I, Williams IH (2005) J Phys Chem B 109:3707–3710CrossRefGoogle Scholar
  69. 69.
    Martí S, Moliner V, Tuñón I (2005) J Chem Theory Comput 1:1008–1016CrossRefGoogle Scholar
  70. 70.
    Fukui K (1981) Acc Chem Res 14:363–368CrossRefGoogle Scholar
  71. 71.
    Świderek K, Martí S, Tuñón I, Moliner V, Bertran J (2015) J Am Chem Soc 137:12024–12034CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Tubert-Brohman I, Guimaraes CRW, Jorgensen WL (2005) J Chem Theory Comput 1:817–823CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lopez X, York DM (2003) Theor Chem Acc 109:149–159CrossRefGoogle Scholar
  74. 74.
    Gregersen BA, Lopez X, York DM (2003) J Am Chem Soc 125:7178–7179CrossRefGoogle Scholar
  75. 75.
    Gregersen BA, Lopez X, York DM (2004) J Am Chem Soc 126:7504–7513CrossRefGoogle Scholar
  76. 76.
    Jencks WP (1985) Chem Rev 85:511–527CrossRefGoogle Scholar
  77. 77.
    O’Ferrall RM (1970) J Chem Soc B 274–277Google Scholar
  78. 78.
    Gaus M, Lu X, Elstner M, Cui Q (2014) J Chem Theor Comput 10:1518–1537CrossRefGoogle Scholar
  79. 79.
    Turner JA, Moliner V, Williams IH (1999) Phys Chem Chem Phys 1:1323–1331CrossRefGoogle Scholar
  80. 80.
    Ferrer S, Tuñón I, Martí S, Moliner V, García-Viloca M, González-Lafont A, Lluch JM (2006) J Am Chem Soc 128:16851–16863CrossRefGoogle Scholar
  81. 81.
    Xue Q, Yeung ES (1995) Nature 373:681–683CrossRefGoogle Scholar
  82. 82.
    Gerratana B, Cleland WW, Reinhardt LA (2001) Biochemistry 40:2964–2971CrossRefGoogle Scholar
  83. 83.
    Kaminski S, Gaus M, Elstner M (2012) J Phys Chem A 116:11927–11937CrossRefGoogle Scholar
  84. 84.
    Kaminski S, Giese TJ, Gaus M, York DM, Elstner M (2012) J Phys Chem A 116:9131–9141CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Krzemińska A, Świderek K (2019) J Chem Inf Model 59:2995–3005CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departament de Química Física i AnalíticaUniversitat Jaume ICastellónSpain

Personalised recommendations