Advertisement

Theoretical studies of \({{\mathrm{{CN} + {H}}_{2}({\mathrm{D}}_{2})}}\) reactions: competition between H(D)-abstractions in \({\mathrm{H(D) + HCN(DCN)/HNC(DNC)}} \) channels

  • Alessandra F. AlbernazEmail author
  • Patricia R. P. Barreto
Regular Article
  • 112 Downloads

Abstract

The \(\hbox {CN} + \hbox {H}_{2}\) reaction was investigated by considering the two possible channels, \(\hbox {H} + \hbox {HCN}\) and \(\hbox {H} + \hbox {HNC}\), taking into account the isotopic effects and with the vibrationally excited states. The frequencies and structures for all species of the \(\hbox {CN} + \hbox {H}_{2}/\hbox {D}_{2}\) reaction were calculated using G3 method for further kinetics calculation. The thermal rate constants were calculated using the conventional transition-state theory (TST) and canonical variational transition-state theory (CVT) by APUAMA code, over the temperature range from 200 to 4000 K. In addition, rate coefficients for vibrationally excited reactants CN (v = 1) or \(\hbox {H}_{2}\) (v = 1) or \(\hbox {D}_{2}\) (v = 1) are presented. The branching ratio for the partitioning into H/D + HCN/DCN or H/D + HNC/DNC has, also, been determined. The results showed that the \(\hbox {CN} (v=0) + \hbox {H}_{2} (v=0) \rightarrow \hbox {H} + \hbox {HCN} \) channel is dominant at all range of temperature, while \(\hbox {CN } (v=1) + \hbox {H}_{2} (v=0) \rightarrow \hbox {H} + \hbox {HNC}\) channel is dominant at T \(\ge \) 1900 K. The isotopic effects are the same behavior that \(\hbox {CN}(v=0,1) + \hbox {H}_{2}(v=0,1) \rightarrow \hbox {H} + \hbox {HCN/HNC}\) reactions. Reasonable agreement was found between the experimental results and the rate constants predicted by conventional transition-state theory, with tunneling correction, using the theoretical transition-state properties.

Keywords

CN+H2 reaction HCN and HNC radicals Hydrogen abstraction Thermal rate constant 

Notes

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare

References

  1. 1.
    Schacke H, Wagner HGg (1977) J Wolfrum Chem Phys 81:670Google Scholar
  2. 2.
    Sims IR, Smith IWM (1988) Chem Phys Lett 149:565CrossRefGoogle Scholar
  3. 3.
    Sun Q, Yang DL, Bowman JM, Lin MC (1990) J Chem Phys 93:4730CrossRefGoogle Scholar
  4. 4.
    He KG, Tokue I, Macdonald RG (1998) J Phys Chem A 102:4585.  https://doi.org/10.1021/jp980875o CrossRefGoogle Scholar
  5. 5.
    He KG, Tokue I, Harding LB, Macdonald RG (1998) J Phys Chem A 102:7653.  https://doi.org/10.1021/jp982391y CrossRefGoogle Scholar
  6. 6.
    Che DC, Liu K (1996) Chem Phys 207:367CrossRefGoogle Scholar
  7. 7.
    Lai LH, Wang JH, Che DC, Liu K (1996) J Chem Phys 105:3332CrossRefGoogle Scholar
  8. 8.
    Wang JH, Liu K, Schatz GC, ter Horst M (1997) J Chem Phys 107:7869CrossRefGoogle Scholar
  9. 9.
    Pfeiffer JM, Metz RB, Thoemke JD, Woods E III, Crim FF (1996) J Chem Phys 104:4490CrossRefGoogle Scholar
  10. 10.
    Kreher C, Theinl R, Gericke KH (1996) J Chem Phys 104:4481CrossRefGoogle Scholar
  11. 11.
    Bair RA, Dunning TH (1985) J Chem Phys 82:2280CrossRefGoogle Scholar
  12. 12.
    ter Horst MA, Schatz GC, Harding LB (1996) J Chem Phys 105:558CrossRefGoogle Scholar
  13. 13.
    Carter S, Bowman JM, Harding LB (1997) Spectrochim Acta A 53:1179CrossRefGoogle Scholar
  14. 14.
    Sun Q, Bowman JM (1990) J Chem Phys 92:5201CrossRefGoogle Scholar
  15. 15.
    Bowman JM (1991) J Phys Chem 95:4960CrossRefGoogle Scholar
  16. 16.
    Bowman JM, Schatz GC (1995) Annu Rev Phys Chem 46:169CrossRefGoogle Scholar
  17. 17.
    Clary DC (1995) J Phys Chem 99:13664CrossRefGoogle Scholar
  18. 18.
    Takayanagi T, Schatz GC (1997) J Chem Phys 106:3227CrossRefGoogle Scholar
  19. 19.
    Bethardy GA, Wagner AF, Schatz GC, ter Host MA (1997) J Chem Phys 106:6001CrossRefGoogle Scholar
  20. 20.
    Takayanagi T, Schatz GC (1997) Chem Phys Lett 265:410CrossRefGoogle Scholar
  21. 21.
    Manthe U, Matzkies F (1998) Chem Phys Lett 282:442CrossRefGoogle Scholar
  22. 22.
    Zhu W, Zhang JZH, Zhang YC, Zhang YB, Zhan LX, Zhang SL, Zhang DH (1998) J Chem Phys 108:3509CrossRefGoogle Scholar
  23. 23.
    Correa E, e Silva WB, Barreto PRP, Albernaz AF (2017) J Mol Model 23:169CrossRefGoogle Scholar
  24. 24.
    Zhao R, Gao D, Pan X, Song L, Yu H, Yu S, Yao L (2019) Chem Phys 516:38CrossRefGoogle Scholar
  25. 25.
    Kaledin AL, Haeven MC, Bowman JM (1999) J Chem Phys 100:10380CrossRefGoogle Scholar
  26. 26.
    Euclides HO, Barreto PRP (2017) J Mol Model 23:176CrossRefGoogle Scholar
  27. 27.
    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764CrossRefGoogle Scholar
  28. 28.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479CrossRefGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09. Gaussian Inc, WallingfordGoogle Scholar
  30. 30.
    Fernández-Ramos A, Miller JA, Klippenstein SJ, Truhlar DG (2006) Chem Rev 106:4518CrossRefGoogle Scholar
  31. 31.
    Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV. Constants of diatomic molecules. Van Nostrand Reinhold Co., New YorkCrossRefGoogle Scholar
  32. 32.
    Irikura KK (2007) J Phys Chem Ref Data 36(2):389CrossRefGoogle Scholar
  33. 33.
    Wagner AF, Bair RA (1986) Int Chem Kinet 18:473CrossRefGoogle Scholar
  34. 34.
    Kim K, Kin WT (1979) J Chem Phys 71:1967CrossRefGoogle Scholar
  35. 35.
    da Silva WB, Albernaz AF, Barreto PRP, Correa E (2017) J Mol Model 23:143CrossRefGoogle Scholar
  36. 36.
    da Silva WB, Gargano R, e Silva GM, Albernaz AF (2016) Rev Virt Quim 8:515CrossRefGoogle Scholar
  37. 37.
    Balucani N, Leonori F, Petrucci R, Wang X, Casavecchia P, Skouteris D, Albernaz AF, Gargano R (2015) Chem Phys 449:34CrossRefGoogle Scholar
  38. 38.
    Gurvich LV, Veyts IV, Alcock CB (1989) Thermodynamic properties of individual substances, Fouth edn. Hemisphere Pub. Co., New YorkGoogle Scholar
  39. 39.
    Murrell JN, Farantos SC, Huxley P, Varandas AJC (1984) Molecular potential energy functions. Oxford University Press, New YorkGoogle Scholar
  40. 40.
    Dunham JL (1932) Phys Rev 41:713CrossRefGoogle Scholar
  41. 41.
    Hammond G (1955) J Am Chem Soc 77:334CrossRefGoogle Scholar
  42. 42.
    Atakan B, Jacobs A, Wahl M, Weller R (1989) J Wolfrum Chem Phys Lett 154:449CrossRefGoogle Scholar
  43. 43.
    Balla RJ, Pasternack L (1987) J Phys Chem 91:73CrossRefGoogle Scholar
  44. 44.
    Wang X, Bowman M (2013) J Chem Theory Comput 9:901CrossRefGoogle Scholar
  45. 45.
    Jiang B, Guo H (2013) J Chem Phys 139:224310CrossRefGoogle Scholar
  46. 46.
    Sumathi R, Nguyen MT (1998) J Phys Chem A 102:8013CrossRefGoogle Scholar
  47. 47.
    Ju L-P, Han K-L, Zang JZH (2006) J Theory Comput Chem 4:769CrossRefGoogle Scholar
  48. 48.
    Johnston GW, Bersohn R (1989) J Chem Phys 90:7096CrossRefGoogle Scholar
  49. 49.
    Jacobs A, Wahl M, Weller R (1989) J Wolfrum Symp Int Combust Proc 22:1093CrossRefGoogle Scholar
  50. 50.
    Choi N, Blitz MA, McKee K, Pilling MJ, Seakins PW (2004) Chem Phys Lett 68:384CrossRefGoogle Scholar
  51. 51.
    Natarajan K, Roth P (1988) Symp Int Combust Proc 21:729CrossRefGoogle Scholar
  52. 52.
    Wooldridge ST, Hanson RK, Bowman CT (1996) Int J Chem Phys Kinet 28:245CrossRefGoogle Scholar
  53. 53.
    Baulch DL, Cobos CJ, Cox RA, Frank P, Hayman G, Just Th, Kerr JA, Murrells T, Pilling MJ, Troe J, Walker RW, Warnatz J (1994) J Phys Chem Ref Data 23:847CrossRefGoogle Scholar
  54. 54.
    Tsang W (1992) J Phys Chem Ref Data 21:753CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade Brasília, CP04455BrasíliaBrazil
  2. 2.Laboratório Associado de Plasma – LAPInstituto Nacional de Pesquisas Espaciais - INPE, CP515São José dos CamposBrazil

Personalised recommendations