Advertisement

Unravelling the reaction mechanism for the Claisen–Tishchenko condensation catalysed by Mn(I)-PNN complexes: a DFT study

  • Luis Miguel AzofraEmail author
  • Luigi CavalloEmail author
Regular Article
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)

Abstract

In this work, we study the potential catalytic role of previously identified Mn(I)-PNN complexes in the Claisen–Tishchenko reaction. An in-depth investigation of the reaction mechanism suggests that, after activation of the 16e pre-catalyst, a hydrogenated 18e active species is generated. Based on calculations, rate-limiting barriers in a range of ca. 15–20 kcal mol−1 are seen for a model process consisting in the esterification of acetaldehyde into ethyl acetate at 100 °C and 1 atm reaction conditions (in toluene solution). Our hypothesis is centred on the role of the Mn centre as the only active site involved in both elementary steps, namely hydride borrowing and C–O bond formation. During this C–O bond formation step, diastereoisomers (RN,R) and (RN,S) [or their enantiomeric pairs (SN,S) and (SN,R)] can be generated, with calculations showing a preference towards the (RN,R) pathway.

Keywords

Manganese complexes PNN ligands Homogeneous catalysis Esters DFT 

Notes

Acknowledgements

This research has been supported by the King Abdullah University of Science and Technology (KAUST). Gratitude is also due to the KAUST Supercomputing Laboratory using the supercomputer Shaheen II for providing the computational resources. LMA is an ULPGC Postdoc Fellow, and thanks Universidad de Las Palmas de Gran Canaria (ULPGC). LMA also acknowledges the Scientific Committee of ESPA 2018 Conference for selecting him as speaker.

Compliance with ethical standards

Conflict of interest

Authors declare no competing financial interests.

Supplementary material

214_2019_2449_MOESM1_ESM.docx (152 kb)
Supplementary material 1 (DOCX 153 kb)

References

  1. 1.
    Otera J, Nishikido J (2010) Esterification: methods, reactions, and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  2. 2.
    Chirik P, Morris R (2015) Acc Chem Res 48:2495CrossRefGoogle Scholar
  3. 3.
    Schrock RR, Osborn JA (1976) J Am Chem Soc 98:2134–2143CrossRefGoogle Scholar
  4. 4.
    Tani K, Iseki A, Yamagata T (1999) Chem Commun.  https://doi.org/10.1039/a905765j:1821-1822 CrossRefGoogle Scholar
  5. 5.
    Shen R, Chen T, Zhao Y, Qiu R, Zhou Y, Yin S, Wang X, Goto M, Han L-B (2011) J Am Chem Soc 133:17037–17044CrossRefGoogle Scholar
  6. 6.
    Neumann KT, Klimczyk S, Burhardt MN, Bang-Andersen B, Skrydstrup T, Lindhardt AT (2016) ACS Catal 6:4710–4714CrossRefGoogle Scholar
  7. 7.
    Richmond E, Moran J (2015) J Org Chem 80:6922–6929CrossRefGoogle Scholar
  8. 8.
    Tokmic K, Fout AR (2016) J Am Chem Soc 138:13700–13705CrossRefGoogle Scholar
  9. 9.
    Korytiaková E, Thiel NO, Pape F, Teichert JF (2017) Chem Commun 53:732–735CrossRefGoogle Scholar
  10. 10.
    Brzozowska A, Azofra LM, Zubar V, Atodiresei I, Cavallo L, Rueping M, El-Sepelgy O (2018) ACS Catal 8:4103–4109CrossRefGoogle Scholar
  11. 11.
    Das UK, Chakraborty S, Diskin-Posner Y, Milstein D (2018) Angew Chem 130:13632–13636CrossRefGoogle Scholar
  12. 12.
    Glatz M, Stöger B, Himmelbauer D, Veiros LF, Kirchner K (2018) ACS Catal 8:4009–4016CrossRefGoogle Scholar
  13. 13.
    Borghs JC, Lebedev Y, Rueping M, El-Sepelgy O (2019) Org Lett 21:70–74CrossRefGoogle Scholar
  14. 14.
    Borghs JC, Azofra LM, Biberger T, Linnenberg O, Cavallo L, Rueping M, El-Sepelgy O ChemSusChemGoogle Scholar
  15. 15.
    Kumar A, Espinosa-Jalapa NA, Leitus G, Diskin-Posner Y, Avram L, Milstein D (2017) Angew Chem Int Ed 56:14992–14996CrossRefGoogle Scholar
  16. 16.
    Espinosa-Jalapa NA, Kumar A, Leitus G, Diskin-Posner Y, Milstein D (2017) J Am Chem Soc 139:11722–11725CrossRefGoogle Scholar
  17. 17.
    Jang YK, Krückel T, Rueping M, El-Sepelgy O (2018) Org Lett 20:7779–7783CrossRefGoogle Scholar
  18. 18.
    Gorgas N, Kirchner K (2018) Acc Chem Res 51:1558–1569CrossRefGoogle Scholar
  19. 19.
    Kallmeier F, Kempe R (2018) Angew Chem Int Ed 57:46–60CrossRefGoogle Scholar
  20. 20.
    Luque-Urrutia JA, Solà M, Milstein D, Poater A (2019) J Am Chem Soc 141:2398–2403CrossRefGoogle Scholar
  21. 21.
    Masdemont J, Luque-Urrutia JA, Gimferrer M, Milstein D, Poater A (2019) ACS Catal.  https://doi.org/10.1021/acscatal.8b04175:1662-1669 CrossRefGoogle Scholar
  22. 22.
    Claisen L (1887) Ber Dtsch Chem Ges 20:646–650CrossRefGoogle Scholar
  23. 23.
    Dzik WI, Gooßen LJ (2011) Angew Chem Int Ed 50:11047–11049CrossRefGoogle Scholar
  24. 24.
    Tishchenko VE (1906) J Russ Phys Chem Soc 38:355–418Google Scholar
  25. 25.
    Tishchenko VE (1906) J Russ Phys Chem Soc 38:482–540Google Scholar
  26. 26.
    Simon M-O, Darses S (2010) Adv Synth Catal 352:305–308CrossRefGoogle Scholar
  27. 27.
    Ogoshi S, Hoshimoto Y, Ohashi M (2010) Chem Commun 46:3354–3356CrossRefGoogle Scholar
  28. 28.
    Hoshimoto Y, Ohashi M, Ogoshi S (2011) J Am Chem Soc 133:4668–4671CrossRefGoogle Scholar
  29. 29.
    Tejel C, Ciriano MA, Passarelli V (2011) Chem A Eur J 17:91–95CrossRefGoogle Scholar
  30. 30.
    Morris SA, Gusev DG (2017) Angew Chem Int Ed 56:6228–6231CrossRefGoogle Scholar
  31. 31.
    Kadassery KJ, MacMillan SN, Lacy DC (2018) Dalton Trans 47:12652–12655CrossRefGoogle Scholar
  32. 32.
    Das UK, Ben-David Y, Leitus G, Diskin-Posner Y, Milstein D (2019) ACS Catal 9:479–484CrossRefGoogle Scholar
  33. 33.
    Zubar V, Lebedev Y, Azofra LM, Cavallo L, El-Sepelgy O, Rueping M (2018) Angew Chem Int Ed 57:13439–13443CrossRefGoogle Scholar
  34. 34.
    Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620CrossRefGoogle Scholar
  35. 35.
    Grimme S (2006) J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  36. 36.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305CrossRefGoogle Scholar
  37. 37.
    Kudin KN, Scuseria GE, Cancès E (2002) J Chem Phys 116:8255–8261CrossRefGoogle Scholar
  38. 38.
    Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comput Chem 17:49–56CrossRefGoogle Scholar
  39. 39.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09 (revision D.01). Gaussian, Inc., Wallingford CTGoogle Scholar
  41. 41.
    Eisenstein O, Crabtree RH (2013) New J Chem 37:21–27CrossRefGoogle Scholar
  42. 42.
    Kelly CP, Cramer CJ, Truhlar DG (2005) J Chem Theory Comput 1:1133–1152CrossRefGoogle Scholar
  43. 43.
    Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem B 110:16066–16081CrossRefGoogle Scholar
  44. 44.
    Bryantsev VS, Diallo MS, Goddard Iii WA (2008) J Phys Chem B 112:9709–9719CrossRefGoogle Scholar
  45. 45.
    Nguyen DH, Trivelli X, Capet F, Paul J-F, Dumeignil F, Gauvin RM (2017) ACS Catal 7:2022–2032CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CIDIA-FEAM (Unidad Asociada al Consejo Superior de Investigaciones Científicas, CSIC, avalada por el Instituto de Ciencia de Materiales de Sevilla, Universidad de Sevilla), Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT)Universidad de Las Palmas de Gran Canaria (ULPGC)Las Palmas de Gran CanariaSpain
  2. 2.Departamento de QuímicaUniversidad de Las Palmas de Gran Canaria (ULPGC)Las Palmas de Gran CanariaSpain
  3. 3.KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations