Advertisement

Comparative studies on the effect of CB[8] on the charge transfer interaction

  • Fangfang Zhou
  • Jinshu Wang
  • Yuping Zhang
  • Qinghe Wang
  • Chengwei Guo
  • Fukui Wang
  • Hongjing ZhangEmail author
Regular Article
  • 55 Downloads

Abstract

Cucurbit[8]uril (CB[8])-stabilized charge transfer pair between 2, 6-dihydroxynaphthalene and methylviologen derivative has been theoretically studied at the PBE0-D3/6-311+G* level. The structure, interaction energy, electron density, and frontier orbital properties of the complex inside CB[8] have been computed and compared with the corresponding properties in gas and water at the same level. Geometric and energetic results show that the guest pair inside CB[8] represents closer packing and stronger binding energy. The VMD program makes the binding strength visible, and the results are consistent with the binding energy results in gas, water, and CB[8]. The results of charge transfer excitation analysis suggest that CB[8] weakens the effect of solvation on the charge transfer excitation to make the complex show a charge transfer character. The calculation results of HOMO and LUMO orbitals suggest that the cavity of the CB[8] is helpful for the intermolecular charge transfer when compared with the case in water and is not involved in this process. This investigation would be useful for our understanding on the function of CB[8] and helpful in designing the supramolecular systems.

Keywords

Cucurbit[8]uril Charge transfer pair Closer packing Charge transfer excitation Frontier orbital 

Notes

References

  1. 1.
    Lee JW, Samal S, Selvapalam N, Kim HJ, Kim K (2003) Acc Chem Res 36:621–630CrossRefGoogle Scholar
  2. 2.
    Kim K, Selvapalam N, Ko YH, Park KM, Kim D, Kim J (2007) Chem Soc Rev 36:267–279CrossRefGoogle Scholar
  3. 3.
    Nau WM, Florea M, Assaf KI (2011) Isr J Chem 51:559–577CrossRefGoogle Scholar
  4. 4.
    Masson E, Ling X, Joseph R, Kyeremeh-Mensah L, Lu X (2012) RSC Adv 2:1213–1247CrossRefGoogle Scholar
  5. 5.
    Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) Angew Chem Int Ed 44:4844–4870CrossRefGoogle Scholar
  6. 6.
    Jeon WS, Kim HJ, Lee C, Kim K (2002) Chem Commun 17:1828–1829.  https://doi.org/10.1039/B202082C CrossRefGoogle Scholar
  7. 7.
    Lee E, Heo J, Kim K (2000) Angew Chem Int Ed 39:2699–2701CrossRefGoogle Scholar
  8. 8.
    Park KM, Whang D, Lee E, Heo J, Kim K (2002) Chem Eur J 8:498–508CrossRefGoogle Scholar
  9. 9.
    Kim K (2002) Chem Soc Rev 31:96–107CrossRefGoogle Scholar
  10. 10.
    Mao Y, Liu K, Lv G, Wen Y, Zhu X, Lan H, Yi T (2015) Chem Commun 51:6667–6670CrossRefGoogle Scholar
  11. 11.
    Jeon YJ, Bharadwaj PK, Choi S, Lee JW, Kim K (2002) Angew Chem Int Ed 41:4474–4476CrossRefGoogle Scholar
  12. 12.
    Kim SY, Jung IS, Lee E, Kim J, Sakamoto S, Yamaguchi K, Kim K (2001) Angew Chem Int Ed 113:2119–2121CrossRefGoogle Scholar
  13. 13.
    Day AI, Blanch RJ, Arnold AP, Lorenzo S, Lewis GR, Dance I (2002) Angew Chem Int Ed 41:275–277CrossRefGoogle Scholar
  14. 14.
    Mock WL, Irra TA, Wepsiec JP, Adhya M (1989) J Org Chem 54:5302–5308CrossRefGoogle Scholar
  15. 15.
    Jon SY, Ko YH, Park SH, Kim HJ, Kim K (2001) Chem Commun 19:1938–1939CrossRefGoogle Scholar
  16. 16.
    Moon K, Grindstaff J, Sobransingh D, Kaifer AE (2004) Angew Chem Int Ed 43:5496–5499CrossRefGoogle Scholar
  17. 17.
    Yb Lim, Kim T, Lee JW, Kim SM, Kim HJ, Kim K, Park JS (2002) Bioconjugate Chem 13:1181–1185CrossRefGoogle Scholar
  18. 18.
    Kim J, Jung IS, Kim SY, Lee E, Kang JK, Sakamoto S, Yamaguchi K, Kim K (2000) J Am Chem Soc 122:540–541CrossRefGoogle Scholar
  19. 19.
    Murray J, Kim K, Ogoshi T, Yao W, Gibb BC (2017) Chem Soc Rev 46:2479–2496CrossRefGoogle Scholar
  20. 20.
    Kim HJ, Heo J, Jeon WS, Lee E, Kim J, Sakamoto S, Yamaguchi K, Kim K (2001) Angew Chem Int Ed 40:1526–1529CrossRefGoogle Scholar
  21. 21.
    Lee JW, Kim K, Choi S, Ko YH, Sakamoto S, Yamaguchi K, Kim K (2002) Chem Commun.  https://doi.org/10.1039/B208280B CrossRefGoogle Scholar
  22. 22.
    Kim K, Kim D, Lee JW, Ko YH, Kim K (2004) Chem Commun.  https://doi.org/10.1039/B400783B CrossRefGoogle Scholar
  23. 23.
    Ko YH, Kim K, Kang JK, Chun H, Lee JW, Sakamoto S, Yamaguchi K, Fettinger JC, Kim K (2004) J Am Chem Soc 126:1932–1933CrossRefGoogle Scholar
  24. 24.
    Jeon WS, Kim E, Ko YH, Hwang I, Lee JW, Kim SY, Kim HJ, Kim K (2005) Angew Chem Int Ed 44:87–91CrossRefGoogle Scholar
  25. 25.
    Ziganshina AY, Ko YH, Jeon WS, Kim K (2004) Chem Commun.  https://doi.org/10.1039/B316651A CrossRefGoogle Scholar
  26. 26.
    Ko YH, Kim E, Hwang I, Kim K (2007) Chem Commun.  https://doi.org/10.1039/b615103e CrossRefGoogle Scholar
  27. 27.
    Hwang I, Ziganshina AY, Ko YH, Yun G, Kim K (2009) Chem Commun.  https://doi.org/10.1039/B818889K CrossRefGoogle Scholar
  28. 28.
    Xu SQ, Zhang X, Nie CB, Pang ZF, Xu XN, Zhao X (2015) Chem Commun 51:16417–16420CrossRefGoogle Scholar
  29. 29.
    Huang Z, Fang Y, Luo Q, Liu S, An G, Hou C, Lang C, Xu J, Dong Z, Liu J (2016) Chem Commun 52:2083–2086CrossRefGoogle Scholar
  30. 30.
    Wang R, Bardelang D, Waite M, Udachin KA, Leek DM, Yu K, Ratcliffe CI, Ripmeester JA (2009) Org Biomol Chem 7:2435–2439CrossRefGoogle Scholar
  31. 31.
    Wang R, Yuan L, Ihmels H, Macartney DH (2007) Chem Eur J 13:6468–6473CrossRefGoogle Scholar
  32. 32.
    Wu X, Meng X, Cheng G (2009) J Incl Phenom Macrocycl Chem 64:325–329CrossRefGoogle Scholar
  33. 33.
    Liu Y, Yu Y, Gao J, Wang Z, Zhang X (2010) Angew ChemInt Ed 49:6576–6579CrossRefGoogle Scholar
  34. 34.
    Liu Y, Yang H, Wang Z, Zhang X (2013) Chem Asian J 8:1626–1632CrossRefGoogle Scholar
  35. 35.
    Fang R, Liu Y, Wang Z, Zhang X (2013) Polym Chem 4:900–903CrossRefGoogle Scholar
  36. 36.
    Liu Y, Liu K, Wang Z, Zhang X (2011) Chem Eur J 17:9930–9935CrossRefGoogle Scholar
  37. 37.
    Liu Y, Huang Z, Tan X, Wang Z, Zhang X (2013) Chem Commun 49:5766–5768CrossRefGoogle Scholar
  38. 38.
    Huang Z, Yang L, Liu Y, Wang Z, Scherman OA, Zhang X (2014) Angew Chem Int Ed 53:5351–5355CrossRefGoogle Scholar
  39. 39.
    Oh KS, Yoon J, Kim KS (2001) J Phys Chem B 105:9726–9731CrossRefGoogle Scholar
  40. 40.
    Pichierri F (2006) J Mol Struct Theochem 765:151–152CrossRefGoogle Scholar
  41. 41.
    Pichierri F (2004) Chem Phys Lett 390:214–219CrossRefGoogle Scholar
  42. 42.
    Suvitha A, Venkataramanan N, Mizuseki H, Kawazoe Y, Ohuchi N (2010) J Incl Phenom Macrocycl Chem 66:213–218CrossRefGoogle Scholar
  43. 43.
    Venkataramanan NS, Ambigapathy S, Mizuseki H, Kawazoe Y (2012) J Phys Chem B 116:14029–14039CrossRefGoogle Scholar
  44. 44.
    Márquez C, Hudgins RR, Nau WM (2004) J Am Chem Soc 126:5806–5816CrossRefGoogle Scholar
  45. 45.
    Pan S, Mondal S, Chattaraj PK (2013) New J Chem 37:2492–2499CrossRefGoogle Scholar
  46. 46.
    Sundararajan M, Solomon RV, Ghosh SK, Venuvanalingam P (2011) RSC Adv 1:1333–1341CrossRefGoogle Scholar
  47. 47.
    Lee C, Yang WT, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  48. 48.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  49. 49.
    Adamo C, Barone V (1999) J Chem Phys 110:6158–6169CrossRefGoogle Scholar
  50. 50.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167CrossRefGoogle Scholar
  51. 51.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  52. 52.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  53. 53.
    Perdew JP (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  54. 54.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104–154119CrossRefGoogle Scholar
  55. 55.
    Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465CrossRefGoogle Scholar
  56. 56.
    Grimme S, Hansen A, Brandenburg JG, Bannwarth C (2016) Chem Rev 116:5105–5154CrossRefGoogle Scholar
  57. 57.
    Møller C, Plesset MS (1934) Phys Rev 46:618–622CrossRefGoogle Scholar
  58. 58.
    Boys S, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  59. 59.
    Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  60. 60.
    Contreras-García J, Johnson ER, Keinan S, Chaudret R (2011) JP Piquemal, DN Beratan, Yang W. J Chem Theory Comput 7:625–632CrossRefGoogle Scholar
  61. 61.
    Le Bahers T, Adamo C, Ciofini I (2011) J Chem Theory Comput 7:2498–2506CrossRefGoogle Scholar
  62. 62.
    Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  63. 63.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Jr. Montgomery JA,, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J (2009) Fox DJ Gaussian 09 Revision D.01. Gaussian Inc., WallingfordGoogle Scholar
  64. 64.
    Lu T, Chen F (2012) J Comp Chem 33:580–592CrossRefGoogle Scholar
  65. 65.
    Bahers TL, Tommaso SD, Peltier C, Fayet G, Giacovazzi R, Tognetti V, Prestianni A, Labat F (2010) J MOL STRUC:THEOCHEM 954:45–51CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fangfang Zhou
    • 1
    • 2
  • Jinshu Wang
    • 1
  • Yuping Zhang
    • 1
  • Qinghe Wang
    • 1
  • Chengwei Guo
    • 1
  • Fukui Wang
    • 1
  • Hongjing Zhang
    • 1
    Email author
  1. 1.Department of Petroleum EngineeringChengde Petroleum CollegeChengdePeople’s Republic of China
  2. 2.State Key Laboratory of Supramolecular Structure and MaterialsJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations