Advertisement

Theoretical determination of the OH-initiated oxidation rate constants of \({\alpha ,\omega }\)-dialkoxyfluoropolyethers

  • Luís P. ViegasEmail author
Regular Article
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)

Abstract

In this work, we have calculated rate constants for the tropospheric reaction between the OH radical and two \({\alpha ,\omega }\)-dialkoxyfluoropolyethers, namely \({\mathrm{R}}{-}({\mathrm{OCF}}_2)_2{-}{\mathrm{OR}}\), with \({\mathrm{R}}{=}{\mathrm{C}}_2{\mathrm{H}}_5\) and \({\mathrm{CH}}({\mathrm{CH}}_3)_2\). In terms of low atmospheric impact, dialkoxyfluoropolyethers are considered to be a promising class of the hydrofluoropolyethers family, although very little is still known about their reactivity. Calculation of the rate constants for these challenging molecular systems was performed by utilizing a cost-effective protocol for bimolecular hydrogen abstraction reactions based on multiconformer transition state theory and employing computationally feasible M08-HX electronic structure calculations. Within the protocol’s uncertainties and approximations, the results maintain the tendencies of our own previous work: (1) OH-initiated oxidation rate constants of dialkoxyfluoropolyethers involving the ethyl and isopropyl groups have the same order of magnitude, which in turn is approximately 10 times larger than the rate constants involving dimethoxyfluoropolyethers; (2) the branching ratios concerning the \(\alpha\)-hydrogens are much larger than the ones concerning the \(\beta\)-hydrogens; and (3) the chain length is seen to have a small effect on the rate constant, which is consistent with experimental work.

Keywords

Atmospheric chemistry Conformational sampling Transition state theory Density functional theory Hydrofluoropolyethers 

Notes

Acknowledgements

L.P.V. acknowledges financial support from the AIAS-COFUND Marie Curie program (Grant Agreement No. 609033), Prof. Frank Jensen for providing access to the computational resources and for the insightful discussions and also Dr. Serguei Patchkovskii for the brute force symmetry determination program.

Supplementary material

214_2019_2436_MOESM1_ESM.pdf (46 kb)
Supplementary material 1 (PDF 46 kb)

References

  1. 1.
    Montzka S, Reimann S, Engel A, Krüger K, O’Doherty S, Sturges W (2011) Ozone-depleting substances (ODSs) and related chemicals, Chapter 1, scientific assessment of ozone depletion: 2010, global ozone research and monitoring project-report no. 52. World Meteorological Organization, GenevaGoogle Scholar
  2. 2.
    Molina MJ, Rowland FS (1974) Nature 249:810Google Scholar
  3. 3.
    Farman JD, Gardiner BG, Shanklin JD (1985) Nature 315:207Google Scholar
  4. 4.
    Montreal protocol on substances that deplete the ozone layer. Final Act, UNEP, 1987 (Revised 1990, London Amendment; revised 1992, Copenhagen Amendment)Google Scholar
  5. 5.
    Zurer PS (1993) Chem Eng News 71:8–18Google Scholar
  6. 6.
    Lazarou YG, Papagiannakopoulos P (1999) Chem Phys Lett 301:19Google Scholar
  7. 7.
    The Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC) (1997)Google Scholar
  8. 8.
    UNEP (2011) HFCs: a critical link in protecting climate and the ozone layer. United Nations Environment Programme (UNEP), Nairobi, p 36Google Scholar
  9. 9.
    Zhang Z, Saini RD, Kurylo MJ, Huie RE (1992) J Phys Chem 96:9301Google Scholar
  10. 10.
    Hsu KJ, DeMore WB (1995) J Phys Chem 99:11141Google Scholar
  11. 11.
    Wallington TJ, Schneider WF, Sehested J, Bilde M, Platz J, Nielsen OJ, Christensen LK, Molina MJ, Molina LT, Wooldridge PW (1997) J Phys Chem A 101:8264Google Scholar
  12. 12.
    Kambanis KG, Lazarou YG, Papagiannakopoulos P (1998) J Phys Chem A 102:8620Google Scholar
  13. 13.
    Marchionni G, Silvani R, Fontana G, Malinverno G, Visca M (1999) J Fluor Chem 95:41Google Scholar
  14. 14.
    Tsai WT (2007) J Hazard Mater A 139:185Google Scholar
  15. 15.
    Bravo I, Marston G, Nutt DR, Shine KP (2011) J Quant Spectrosc Radiat Transfer 112:1967Google Scholar
  16. 16.
    Bivens DB, Minor BH (1998) Int J Refrig 21:567Google Scholar
  17. 17.
    Cavalli F, Glasius M, Hjorth J, Rindone B, Jensen NR (1998) Atmos Environ 32:3767Google Scholar
  18. 18.
    Sekiya A, Misaki S (2000) J Fluor Chem 101:215Google Scholar
  19. 19.
    Urata S, Takada A, Uchimaru T, Chandra AK (2003) Chem Phys Lett 368:215Google Scholar
  20. 20.
    Østerstrøm FF, Nielsen OJ, Andersen MPS, Wallington TJ (2012) Chem Phys Lett 524:32Google Scholar
  21. 21.
    Blanco MB, Rivela C, Teruel MA (2013) Chem Phys Lett 578:33Google Scholar
  22. 22.
    Mellouki A, Le Bras G, Sidebottom H (2003) Chem Rev 103:5077PubMedGoogle Scholar
  23. 23.
    Vereecken L, Francisco JS (2012) Chem Soc Rev 41:6259PubMedGoogle Scholar
  24. 24.
    Mellouki A, Wallington TJ, Chen J (2015) Chem Rev 115:3984PubMedGoogle Scholar
  25. 25.
    Vereecken L, Aumont B, Barnes I, Bozzelli JW, Goldman MJ, Green WH, Madronich S, McGillen MR, Mellouki A, Orlando JJ, Picquet-Varrault B, Rickard AR, Stockwell WR, Wallington TJ, Carter WPL (2018) Int J Chem Kinet 50:435Google Scholar
  26. 26.
    Tuazon EC (1997) Environ Sci Technol 31:1817Google Scholar
  27. 27.
    Andersen MPS, Hurley MD, Wallington TJ, Blandini F, Jensen NR, Librando V, Hjorth J, Marchionni G, Avataneo M, Visca M, Nicolaisen FM, Nielsen OJ (2004) J Phys Chem A 108:1964Google Scholar
  28. 28.
    Wallington TJ, Hurley MD, Javadi TS, Nielsen OJ (2008) Int J Chem Kinet 40:819Google Scholar
  29. 29.
    Andersen MPS, Andersen VF, Nielsen OJ, Sander SP, Wallington TJ (2010) ChemPhysChem 11:4035PubMedGoogle Scholar
  30. 30.
    Menghua W, Navarrini W, Avataneo M, Venturini F, Sansotera M, Gola M (2011) Chimica Oggi 29:67Google Scholar
  31. 31.
    Viegas LP (2018) J Phys Chem A 122:9721PubMedGoogle Scholar
  32. 32.
    Viegas LP (2019) Int J Chem Kinet.  https://doi.org/10.1002/kin.21259 CrossRefGoogle Scholar
  33. 33.
    Marchionni G, Guarda PA (1998) US Patent 5,744,651Google Scholar
  34. 34.
    Marchionni G, Visca M (2003) Eur Pat Appl EP1275678A2Google Scholar
  35. 35.
    Navarrini W, Galimberti M, Fontana G (2006) US Patent 7,141,704Google Scholar
  36. 36.
    Wu M, Navarrini W, Spataro G, Venturini F, Sansotera M (2012) Appl Sci 2:351Google Scholar
  37. 37.
    Marchionni G, Avataneo M, De Patto U, Maccone P, Pezzin G (2005) J Fluor Chem 126:465Google Scholar
  38. 38.
    Avataneo M, De Patto U, Galimberti M, Marchionni G (2005) J Fluor Chem 126:631Google Scholar
  39. 39.
    Marchionni G, Maccone P, Pezzin G (2002) J Fluor Chem 118:149Google Scholar
  40. 40.
    Marchionni G, Petricci S, Guarda PA, Spataro G, Pezzin G (2004) J Fluor Chem 125:1081Google Scholar
  41. 41.
    Vereecken L, Peeters J (2003) J Chem Phys 119:5159Google Scholar
  42. 42.
    Fernández-Ramos A, Ellingson BA, Meana-Pañeda R, Marques JMC, Truhlar DG (2007) Theor Chem Acc 118:813Google Scholar
  43. 43.
    Petit AS, Harvey JN (2012) Phys Chem Chem Phys 14:184PubMedGoogle Scholar
  44. 44.
    Rissanen MP, Kurtén T, Sipilä M, Thornton JA, Kangasluoma J, Sarnela N, Junninen H, Jørgensen S, Schallhart S, Kajos MK, Taipale R, Springer M, Mentel TF, Ruuskanen T, Petäjä T, Worsnop DR, Kjaergaard HG, Ehn M (2014) J Am Chem Soc 136:15596PubMedGoogle Scholar
  45. 45.
    Hansen JC, Francisco JS (2002) ChemPhysChem 3:833PubMedGoogle Scholar
  46. 46.
    Hernández-Soto H, Weinhold F, Francisco JS (2007) J Chem Phys 127:164102PubMedGoogle Scholar
  47. 47.
    Radice S, Causà M, Marchionni G (1998) J Fluor Chem 88:127Google Scholar
  48. 48.
    Radice S, Toniolo P, Avataneo M, De Patto U, Marchionni G, Castiglioni C, Tommasini M, Zerbi G (2004) J Mol Struct Theor Chem 710:151Google Scholar
  49. 49.
    Viegas LP (2017) Int J Quantum Chem 117:e25381Google Scholar
  50. 50.
    Møller KH, Otkjaer RV, Hyttinen N, Kurtén T, Kjaergaard HG (2016) J Phys Chem A 120:10072PubMedGoogle Scholar
  51. 51.
    Bao JL, Truhlar DG (2017) Chem Soc Rev 46:7548PubMedGoogle Scholar
  52. 52.
    Ferro-Costas D, Martínez-Núñez E, Rodríguez-Otero J, Cabaleiro-Lago E, Estévez CM, Fernández B, Fernández-Ramos A, Vázquez SA (2018) J Phys Chem A 122:4790PubMedGoogle Scholar
  53. 53.
    Eckart C (1930) Phys Rev 35:1303Google Scholar
  54. 54.
    Mora-Diez N, Alvarez-Idaboy JR, Boyd RJ (2001) J Phys Chem A 105:9034Google Scholar
  55. 55.
    Alvarez-Idaboy JR, Mora-Diez N, Boyd RJ, Vivier-Bunge A (2001) J Am Chem Soc 123:2018PubMedGoogle Scholar
  56. 56.
    Galano A, Alvarez-Idaboy JR, Ruiz-Santoyo ME, Vivier-Bunge A (2002) J Phys Chem A 106:9520Google Scholar
  57. 57.
    Bravo-Pérez G, Alvarez-Idaboy JR, Cruz-Torres A, Ruíz ME (2002) J Phys Chem A 106:4645Google Scholar
  58. 58.
    Galano A, Alvarez-Idaboy JR, Bravo-Pérez G, Ruiz-Santoyo ME (2002) Phys Chem Chem Phys 4:4648Google Scholar
  59. 59.
    Alvarez-Idaboy JR, Cruz-Torres A, Galano A, Ruiz-Santoyo ME (2004) J Phys Chem A 108:2740Google Scholar
  60. 60.
    Bravo-Pérez G, Alvarez-Idaboy JR, Jiménez AG, Cruz-Torres A (2005) Chem Phys 310:213Google Scholar
  61. 61.
    Cruz-Torres A, Galano A, Alvarez-Idaboy JR (2006) Phys Chem Chem Phys 8:285PubMedGoogle Scholar
  62. 62.
    Iuga C, Alvarez-Idaboy JR, Reyes L, Vivier-Bunge A (2010) J Phys Chem Lett 1:3112Google Scholar
  63. 63.
    Iuga C, Alvarez-Idaboy JR, Vivier-Bunge A (2011) Theor Chem Acc 129:209Google Scholar
  64. 64.
    Zhang F, Dibble TS (2011) Phys Chem Chem Phys 13:17969PubMedGoogle Scholar
  65. 65.
    de la Luz AP, Iuga C, Alvarez-Idaboy JR, Ortíz E, Vivier-Bunge A (2012) Int J Quantum Chem 112:3525Google Scholar
  66. 66.
    Elm J, Jørgensen S, Bilde M, Mikkelsen KV (2013) Phys Chem Chem Phys 15:9636PubMedGoogle Scholar
  67. 67.
    Bänsch C, Kiecherer J, Szöri M, Olzmann M (2013) J Phys Chem A 117:8343PubMedGoogle Scholar
  68. 68.
    Kurtén T, Rissanen MP, Mackeprang K, Thornton JA, Hyttinen N, Jørgensen S, Ehn M, Kjaergaard HG (2015) J Phys Chem A 119:11366PubMedGoogle Scholar
  69. 69.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347Google Scholar
  70. 70.
    Zhao Y, Truhlar DG (2008) J Chem Theory Comput 4:1849PubMedGoogle Scholar
  71. 71.
    Jensen F (2014) J Chem Theory Comput 10:1074PubMedGoogle Scholar
  72. 72.
    Bottoni A, Della Casa P, Poggi G (2001) J Mol Struct Theor Chem 542:123Google Scholar
  73. 73.
    Atadinç F, Selçuki C, Sari L, Aviyente V (2002) Phys Chem Chem Phys 4:1797Google Scholar
  74. 74.
    Wu JY, Liu JY, Li ZS, Sun CC (2003) J Chem Phys 118:10986Google Scholar
  75. 75.
    El-Nahas AM, Uchimaru T, Sugie M, Tokuhashi K, Sekiya A (2005) J Mol Struct Theor Chem 722:9Google Scholar
  76. 76.
    Zavala-Oseguera C, Alvarez-Idaboy JR, Merino G, Galano A (2009) J Phys Chem A 113:13913PubMedGoogle Scholar
  77. 77.
    Zhou CW, Simmie JM, Curran HJ (2010) Phys Chem Chem Phys 12:7221PubMedGoogle Scholar
  78. 78.
    Yu T, Zheng J, Truhlar DG (2011) Chem Sci 2:2199Google Scholar
  79. 79.
    Yu T, Zheng J, Truhlar DG (2012) J Phys Chem A 116:297PubMedGoogle Scholar
  80. 80.
    Zheng J, Seal P, Truhlar DG (2013) Chem Sci 4:200Google Scholar
  81. 81.
    Ramasami P, Abdallah HH, Archibong EF, Blowers P, Ford TA, Kakkar R, Shuai Z, Schaefer HF III (2013) Pure Appl Chem 85:1901Google Scholar
  82. 82.
    Balaganesh M, Rajakumar B (2014) J Mol Graph Model 48:60Google Scholar
  83. 83.
    Jørgensen S, Knap HC, Otkjaer RV, Jensen AM, Kjeldsen MLH, Wennberg PO, Kjaergaard HG (2016) J Phys Chem A 120:266PubMedGoogle Scholar
  84. 84.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215Google Scholar
  85. 85.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364PubMedGoogle Scholar
  86. 86.
    Zhao Y, González-Garcia N, Truhlar DG (2005) J Phys Chem A 109:2012PubMedGoogle Scholar
  87. 87.
    Zhao Y, Lynch BJ, Truhlar DG (2005) Phys Chem Chem Phys 7:43Google Scholar
  88. 88.
    Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101PubMedGoogle Scholar
  89. 89.
    Peverati R, Truhlar DG (2011) J Phys Chem Lett 2:2810Google Scholar
  90. 90.
    Jensen F (2001) J Chem Phys 115:9113Google Scholar
  91. 91.
    Jensen F, Helgaker T (2004) J Chem Phys 121:3463PubMedGoogle Scholar
  92. 92.
    Jensen F (2007) J Phys Chem A 111:11198PubMedGoogle Scholar
  93. 93.
    Jensen F (2012) J Chem Phys 136:114107PubMedGoogle Scholar
  94. 94.
    Jensen F (2013) J Chem Phys 138:014107PubMedGoogle Scholar
  95. 95.
    Marques JMC, Llanio-Trujillo JL, Abreu PE, Pereira FB (2010) J Chem Inf Model 50:2129PubMedGoogle Scholar
  96. 96.
    Fontana G, Causà M, Gianotti V, Marchionni G (2001) J Fluor Chem 109:113Google Scholar
  97. 97.
    Lynch BJ, Truhlar DG (2001) J Phys Chem A 105:2936Google Scholar
  98. 98.
    Prinn RG, Huang J, Weiss RF, Cunnold DM, Fraser PJ, Simmonds PG, McCulloch A, Harth C, Salameh P, O’Doherty S, Wang RHJ, Porter L, Miller BR (2001) Science 292:1882PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aarhus Institute of Advanced StudiesAarhus UniversityAarhusDenmark

Personalised recommendations