Advertisement

Atomic basis functions for molecular electronic structure calculations

  • Dimitri N. LaikovEmail author
Regular Article
  • 63 Downloads

Abstract

Electronic structure methods for accurate calculation of molecular properties have a high cost that grows steeply with the problem size; therefore, it is helpful to have the underlying atomic basis functions that are less in number but of higher quality. Following our earlier work (Laikov in Chem Phys Lett 416:116, 2005.  https://doi.org/10.1016/j.cplett.2005.09.046) where general correlation-consistent basis sets are defined, for any atom, as solutions of purely atomic functional minimization problems, and which are shown to work well for chemical bonding in molecules, we take a further step here and define a new kind of atomic polarization functionals, whose minimization yields additional sets of diffuse functions that help to calculate better molecular electron affinities, polarizabilities, and intermolecular dispersion interactions. Analytical representations by generally contracted Gaussian functions of up to microhartree numerical accuracy grades are developed for atoms hydrogen through nobelium within the four-component Dirac–Coulomb theory and its scalar-relativistic approximation, and also for hydrogen through krypton in the nonrelativistic case. The convergence of correlation energy with the basis set size is studied, and complete-basis-set extrapolation formulas are developed.

Keywords

Atomic basis set Basis set extrapolation Electron correlation Molecular electronic structure 

Notes

References

  1. 1.
    Heitler W, London F (1927) Z Physik 44:455.  https://doi.org/10.1007/bf01397394 CrossRefGoogle Scholar
  2. 2.
    Lennard-Jones JE (1929) Trans Faraday Soc 25:668.  https://doi.org/10.1039/tf9292500668 CrossRefGoogle Scholar
  3. 3.
    Schrödinger E (1926) Ann Phys 384:361.  https://doi.org/10.1002/andp.19263840404 CrossRefGoogle Scholar
  4. 4.
    Schrödinger E (1926) Phys Rev 28:1049.  https://doi.org/10.1103/PhysRev.28.1049 CrossRefGoogle Scholar
  5. 5.
    Dirac PAM (1928) Proc R Soc Lond Ser A 117:610.  https://doi.org/10.1098/rspa.1928.0023 CrossRefGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
    Hartree DR (1928) P Camb Philos Soc 24:89.  https://doi.org/10.1017/S0305004100011919 CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Roothaan CCJ (1951) Rev Mod Phys 23:69.  https://doi.org/10.1103/RevModPhys.23.69 CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133.  https://doi.org/10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  13. 13.
    Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41.  https://doi.org/10.1016/0301-0104(73)80059-X CrossRefGoogle Scholar
  14. 14.
    Lenthe EV, Baerends EJ (2003) J Comput Chem 24:1142.  https://doi.org/10.1002/jcc.10255 CrossRefPubMedGoogle Scholar
  15. 15.
    van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597.  https://doi.org/10.1063/1.466059 CrossRefGoogle Scholar
  16. 16.
    Boys SF (1950) Proc R Soc A 200:542.  https://doi.org/10.1098/rspa.1950.0036 CrossRefGoogle Scholar
  17. 17.
    Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657.  https://doi.org/10.1063/1.1672392 CrossRefGoogle Scholar
  18. 18.
    Stewart RF (1970) J Chem Phys 52:431.  https://doi.org/10.1063/1.1672702 CrossRefGoogle Scholar
  19. 19.
    Ditchfield R, Hehre WJ, Pople JA (1970) J Chem Phys 52:5001.  https://doi.org/10.1063/1.1672736 CrossRefGoogle Scholar
  20. 20.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724.  https://doi.org/10.1063/1.1674902 CrossRefGoogle Scholar
  21. 21.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257.  https://doi.org/10.1063/1.1677527 CrossRefGoogle Scholar
  22. 22.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213.  https://doi.org/10.1007/BF00533485 CrossRefGoogle Scholar
  23. 23.
    Frisch MJ, Pople JA (1984) J Chem Phys 80:3265.  https://doi.org/10.1063/1.447079 CrossRefGoogle Scholar
  24. 24.
    Møller C, Plesset MS (1934) Phys Rev 46:618.  https://doi.org/10.1103/PhysRev.46.618 CrossRefGoogle Scholar
  25. 25.
    Bartlett RJ (1975) J Chem Phys 62:3258.  https://doi.org/10.1063/1.430878 CrossRefGoogle Scholar
  26. 26.
    Pople JA, Seeger R, Krishnan R (1977) Int J Quantum Chem 12:149.  https://doi.org/10.1002/qua.560120820 CrossRefGoogle Scholar
  27. 27.
    Krishnan R, Pople JA (1978) Int J Quantum Chem 14:91.  https://doi.org/10.1002/qua.560140109 CrossRefGoogle Scholar
  28. 28.
    Krishnan R, Frisch MJ, Pople JA (1980) J Chem Phys 72:4244.  https://doi.org/10.1063/1.439657 CrossRefGoogle Scholar
  29. 29.
    Raghavachari K, Pople JA, Replogle ES, Head-Gordon M (1990) J Phys Chem 94:5579.  https://doi.org/10.1021/j100377a033 CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Coester F, Kümmel H (1960) Nucl Phys 17:477.  https://doi.org/10.1016/0029-5582(60)90140-1 CrossRefGoogle Scholar
  32. 32.
    Čížek J (1966) J Chem Phys 45:4256.  https://doi.org/10.1063/1.1727484 CrossRefGoogle Scholar
  33. 33.
    Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910.  https://doi.org/10.1063/1.443164 CrossRefGoogle Scholar
  34. 34.
    Handy NC, Pople JA, Head-Gordon M, Raghavachari K, Trucks GW (1989) Chem Phys Lett 164:185.  https://doi.org/10.1016/0009-2614(89)85013-4 CrossRefGoogle Scholar
  35. 35.
    Ragavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479.  https://doi.org/10.1016/S0009-2614(89)87395-6 CrossRefGoogle Scholar
  36. 36.
    Friesner RA (1988) J Phys Chem 92:3091.  https://doi.org/10.1021/j100322a017 CrossRefGoogle Scholar
  37. 37.
    Ringnalda MN, Belhadj M, Friesner RA (1990) J Chem Phys 93:3397.  https://doi.org/10.1063/1.458819 CrossRefGoogle Scholar
  38. 38.
    Greeley BH, Russo TV, Mainz DT, Friesner RA, Langlois JM, Goddard WA III, Donnelly RE Jr, Ringnalda MN (1994) J Chem Phys 101:4028.  https://doi.org/10.1063/1.467520 CrossRefGoogle Scholar
  39. 39.
    Termath V, Handy NC (1994) Chem Phys Lett 230:17.  https://doi.org/10.1016/0009-2614(94)01160-5 CrossRefGoogle Scholar
  40. 40.
    Murphy RB, Pollard WT, Friesner RA (1997) J Chem Phys 106:5073.  https://doi.org/10.1063/1.473553 CrossRefGoogle Scholar
  41. 41.
    Izsák R, Neese F (2011) J Chem Phys 135:144105.  https://doi.org/10.1063/1.3646921 CrossRefPubMedGoogle Scholar
  42. 42.
    Martinez TJ, Carter EA (1993) J Chem Phys 98:7081.  https://doi.org/10.1063/1.464751 CrossRefGoogle Scholar
  43. 43.
    Schrader DM, Prager S (1962) J Chem Phys 37:1456.  https://doi.org/10.1063/1.1733305 CrossRefGoogle Scholar
  44. 44.
    Whitten JL (1973) J Chem Phys 58:4496.  https://doi.org/10.1063/1.1679012 CrossRefGoogle Scholar
  45. 45.
    Beebe NHF, Linderberg J (1977) Int J Quantum Chem 12:683.  https://doi.org/10.1002/qua.560120408 CrossRefGoogle Scholar
  46. 46.
    Alsenoy CV (1988) J Comput Chem 9:620.  https://doi.org/10.1002/jcc.540090607 CrossRefGoogle Scholar
  47. 47.
    Vahtras O, Almlöf J, Feyereisen MW (1993) Chem Phys Lett 213:514.  https://doi.org/10.1016/0009-2614(93)89151-7 CrossRefGoogle Scholar
  48. 48.
    Feyereisen M, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359.  https://doi.org/10.1016/0009-2614(93)87156-W CrossRefGoogle Scholar
  49. 49.
    Weigend F, Häser M (1997) Theor Chem Acc 97:331.  https://doi.org/10.1007/s002140050269 CrossRefGoogle Scholar
  50. 50.
    Almlöf J, Taylor PR (1987) J Chem Phys 86:4070.  https://doi.org/10.1063/1.451917 CrossRefGoogle Scholar
  51. 51.
    Raffenetti RC (1973) J Chem Phys 58:4452.  https://doi.org/10.1063/1.1679007 CrossRefGoogle Scholar
  52. 52.
    Almlöf J, Taylor PR (1990) J Chem Phys 92:551.  https://doi.org/10.1063/1.458458 CrossRefGoogle Scholar
  53. 53.
    Suaud N, Malrieu JP (2017) Mol Phys 115:2684.  https://doi.org/10.1080/00268976.2017.1303207 CrossRefGoogle Scholar
  54. 54.
    Dunning TH (1989) J Chem Phys 90:1007.  https://doi.org/10.1063/1.456153 CrossRefGoogle Scholar
  55. 55.
    Woon DE, Dunning TH (1993) J Chem Phys 98:1358.  https://doi.org/10.1063/1.464303 CrossRefGoogle Scholar
  56. 56.
    Woon DE, Dunning TH (1995) J Chem Phys 103:4572.  https://doi.org/10.1063/1.470645 CrossRefGoogle Scholar
  57. 57.
    Peterson KA, Dunning TH (2002) J Chem Phys 117:10548.  https://doi.org/10.1063/1.1520138 CrossRefGoogle Scholar
  58. 58.
    Lakin W (1965) J Chem Phys 43:2954.  https://doi.org/10.1063/1.1697255 CrossRefGoogle Scholar
  59. 59.
    Hill RN (1985) J Chem Phys 83:1173.  https://doi.org/10.1063/1.449481 CrossRefGoogle Scholar
  60. 60.
    Kutzelnigg W (1985) Theor Chim Acta 68:445.  https://doi.org/10.1007/BF00527669 CrossRefGoogle Scholar
  61. 61.
    Martin JML (1996) Chem Phys Lett 259:669.  https://doi.org/10.1016/0009-2614(96)00898-6 CrossRefGoogle Scholar
  62. 62.
    Martin JML, Taylor PR (1997) J Chem Phys 106:8620.  https://doi.org/10.1063/1.473918 CrossRefGoogle Scholar
  63. 63.
    Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243.  https://doi.org/10.1016/S0009-2614(98)00111-0 CrossRefGoogle Scholar
  64. 64.
    Schwenke DW (2005) J Chem Phys 122:014107.  https://doi.org/10.1063/1.1824880 CrossRefGoogle Scholar
  65. 65.
    Varandas AJC (2007) J Chem Phys 126:244105.  https://doi.org/10.1063/1.2741259 CrossRefPubMedGoogle Scholar
  66. 66.
    Hill JG, Peterson KA, Knizia G, Werner HJ (2009) J Chem Phys 131:194105.  https://doi.org/10.1063/1.3265857 CrossRefPubMedGoogle Scholar
  67. 67.
    Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796.  https://doi.org/10.1063/1.462569 CrossRefGoogle Scholar
  68. 68.
    Woon DE, Dunning TH (1994) J Chem Phys 100:2975.  https://doi.org/10.1063/1.466439 CrossRefGoogle Scholar
  69. 69.
    Dunning TH, Peterson KA, Wilson AK (2001) J Chem Phys 114:9244.  https://doi.org/10.1063/1.1367373 CrossRefGoogle Scholar
  70. 70.
    Hashimoto T, Hirao K, Tatewaki H (1997) Chem Phys Lett 273:345.  https://doi.org/10.1016/S0009-2614(97)00613-1 CrossRefGoogle Scholar
  71. 71.
    Chong DP (1995) Can J Chem 73:79.  https://doi.org/10.1139/v95-011 CrossRefGoogle Scholar
  72. 72.
    Manninen P, Vaara J (2006) J Comput Chem 27:434.  https://doi.org/10.1002/jcc.20358 CrossRefPubMedGoogle Scholar
  73. 73.
    Lehtola S, Manninen P, Hakala M, Hamalainen K (2013) J Chem Phys 138:044109.  https://doi.org/10.1063/1.4788635 CrossRefPubMedGoogle Scholar
  74. 74.
    Delley B (1990) J Chem Phys 92:508.  https://doi.org/10.1063/1.458452 CrossRefGoogle Scholar
  75. 75.
    Jensen F (2001) J Chem Phys 115:9113.  https://doi.org/10.1063/1.1413524 CrossRefGoogle Scholar
  76. 76.
    Jensen F (2002) J Chem Phys 117:9234.  https://doi.org/10.1063/1.1515484 CrossRefGoogle Scholar
  77. 77.
    Jensen F (2002) J Chem Phys 116:7372.  https://doi.org/10.1063/1.1465405 CrossRefGoogle Scholar
  78. 78.
    VandeVondele J, Hutter J (2007) J Chem Phys 127:114105.  https://doi.org/10.1063/1.2770708 CrossRefPubMedGoogle Scholar
  79. 79.
    van Duijneveldt-van de Rijdt JGCM, van Duijneveldt FB (1999) J Chem Phys 111:3812.  https://doi.org/10.1063/1.479684 CrossRefGoogle Scholar
  80. 80.
    Boys SF, Bernardi F (1970) Mol Phys 19:553.  https://doi.org/10.1080/00268977000101561 CrossRefGoogle Scholar
  81. 81.
    Laikov DN (2005) Chem Phys Lett 416:116.  https://doi.org/10.1016/j.cplett.2005.09.046 CrossRefGoogle Scholar
  82. 82.
    Adamowicz L, Bartlett RJ (1987) J Chem Phys 86:6314.  https://doi.org/10.1063/1.452468 CrossRefGoogle Scholar
  83. 83.
    Dyall KG (1994) J Chem Phys 100:2118.  https://doi.org/10.1063/1.466508 CrossRefGoogle Scholar
  84. 84.
    Shamov GA, Schreckenbach G, Vo TN (2007) Chem Eur J 13:4932.  https://doi.org/10.1002/chem.200601244 CrossRefPubMedGoogle Scholar
  85. 85.
    Shamov GA, Schreckenbach G (2006) J Phys Chem A 110:9486.  https://doi.org/10.1021/jp063060l CrossRefPubMedGoogle Scholar
  86. 86.
    Ustynyuk YA, Gloriozov IP, Kalmykov SN, Mitrofanov AA, Babain VA, Alyapyshev MY, Ustynyuk NA (2014) Solv. Extr. Ion Exch. 32:508.  https://doi.org/10.1080/07366299.2014.915666 CrossRefGoogle Scholar
  87. 87.
    Lavrov HV, Ustynyuk NA, Matveev PI, Gloriozov IP, Zhokhov SS, Alyapyshev M, Tkachenko LI, Voronaev IG, Babain V, Kalmykov SN, Ustynyuk YA (2017) Dalton Trans 46:10926.  https://doi.org/10.1039/C7DT01009E CrossRefPubMedGoogle Scholar
  88. 88.
    Saenko EV, Laikov DN, Baranova IA, Feldman VI (2011) J Chem Phys 135:101103.  https://doi.org/10.1063/1.3638690 CrossRefPubMedGoogle Scholar
  89. 89.
    Handy NC, Marron MT, Silverstone HJ (1969) Phys Rev 180:45.  https://doi.org/10.1103/PhysRev.180.45 CrossRefGoogle Scholar
  90. 90.
    Morrell MM, Parr RG, Levy M (1975) J Chem Phys 62:549.  https://doi.org/10.1063/1.430509 CrossRefGoogle Scholar
  91. 91.
    Laikov DN (2019) J Chem Phys 150:061103.  https://doi.org/10.1063/1.5082231 CrossRefPubMedGoogle Scholar
  92. 92.
    Aoyama T, Hayakawa M, Kinoshita T, Nio M (2012) Phys Rev Lett 109:111807.  https://doi.org/10.1103/PhysRevLett.109.111807 CrossRefPubMedGoogle Scholar
  93. 93.
    Hanneke D, Hoogerheide SF, Gabrielse G (2011) Phys Rev A 83:052122.  https://doi.org/10.1103/PhysRevA.83.052122 CrossRefGoogle Scholar
  94. 94.
    Visscher L, Dyall KG (1997) Atom Data Nucl Data 67:207.  https://doi.org/10.1006/adnd.1997.0751 CrossRefGoogle Scholar
  95. 95.
    Meija J, Coplen TB, Berglund M, Brand WA, Bièvre PD, Gröning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T (2016) Pure Appl Chem 88:293.  https://doi.org/10.1515/pac-2015-0503 CrossRefGoogle Scholar
  96. 96.
    Grant IP, Mayers DF, Pyper NC (1976) J Phys B At Mol Phys 9:2777.  https://doi.org/10.1088/0022-3700/9/16/013 CrossRefGoogle Scholar
  97. 97.
    Wesolowski SS, Valeev EF, King RA, Baranovski V, Schaefer HF (2000) Mol Phys 98:1227.  https://doi.org/10.1080/00268970050080582 CrossRefGoogle Scholar
  98. 98.
  99. 99.
    Sosulin IS, Shiryaeva ES, Tyurin DA, Feldman VI (2017) J Chem Phys 147:131102.  https://doi.org/10.1063/1.4999772 CrossRefPubMedGoogle Scholar
  100. 100.
    Ryazantsev SV, Tyurin DA, Feldman VI (2017) Spectrochim Acta A 187:39.  https://doi.org/10.1016/j.saa.2017.06.018 CrossRefGoogle Scholar
  101. 101.
    Ryazantsev SV, Tyurin DA, Feldman VI, Khriachtchev L (2017) J Chem Phys 147:184301.  https://doi.org/10.1063/1.5000578 CrossRefPubMedGoogle Scholar
  102. 102.
    Kameneva SV, Tyurin DA, Feldman VI (2017) Phys Chem Chem Phys 19:24348.  https://doi.org/10.1039/c7cp03518g CrossRefPubMedGoogle Scholar
  103. 103.
    Kameneva SV, Tyurin DA, Nuzhdin KB, Feldman VI (2016) J Chem Phys 145:214309.  https://doi.org/10.1063/1.4969075 CrossRefPubMedGoogle Scholar
  104. 104.
    Shiryaeva ES, Tyurin DA, Feldman VI (2016) J Phys Chem A 120:7847.  https://doi.org/10.1021/acs.jpca.6b07301 CrossRefPubMedGoogle Scholar
  105. 105.
    Sosulin IS, Shiryaeva ES, Tyurin DA, Feldman VI (2018) J Phys Chem A 122:4042.  https://doi.org/10.1021/acs.jpca.8b01485 CrossRefPubMedGoogle Scholar
  106. 106.
    Sosulin IS, Tyurin DA, Feldman VI (2018) Stuct Chem.  https://doi.org/10.1007/s11224-018-1232-z CrossRefGoogle Scholar
  107. 107.
    Laikov DN (2011) J Chem Phys 135:134120.  https://doi.org/10.1063/1.3646498 CrossRefPubMedGoogle Scholar
  108. 108.
    Briling KR (2017) J Chem Phys 147:157101.  https://doi.org/10.1063/1.5000525 CrossRefPubMedGoogle Scholar
  109. 109.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations