Advertisement

Physicochemical properties of the three-cavity form of calix[n = 4, 6, 8]aren molecules: DFT investigation

  • B. GassoumiEmail author
  • M. Chaabene
  • H. Ghalla
  • R. Ben Chaabane
Feature Article
  • 23 Downloads

Abstract

The shape, size and diameter of the cavities are one of the main factors which control the interactions of the calix[n]arene molecules with cation, anion or neutral guests in sensor applications. In this work, vibrational spectroscopy analysis, molecular electrostatic potential (MEP) surface, atom in molecules (AIM) and thermochemical properties were used to check the reorganizations of hydrogen bonds in such cavity shape for the improvement of physical proprieties of CX[n] molecules. We have demonstrated that the hydrogen bonds O···H and the angles O–H···O of CX[n = 4, 6, 8] play the role of the moderator or modifier of the cavity. MEP topography reveals that the cavity form of CX[8] is less hydrophilic as compared to those of CX[4] cavity. The QTAIM theory showed that CX[4] and CX[8] has a more symmetric and well-organized cavity than CX[6]. It was also shown that the hydrogen bond enhanced the topographic parameters in CX[n] at the lower edge levels.

Keywords

Calix[n]arene Hydrogen bonding Cooperativity Molecular electrostatic potential Intermolecular interactions 

Notes

Acknowledgements

The authors acknowledge financial support from the Tunisian’s Ministry of high education and scientific research. In this work, we were granted access to the HPC resources of the FLMSN, ‘Fédération Lyonnaise de Modélisation et Sciences Numériques’, partner of EQUIPEX EQUIP@MESO and to the ‘Centre de calcul CC-IN2P3’ at Villeurbanne, France.

Supplementary material

214_2019_2425_MOESM1_ESM.docx (345 kb)
Supplementary material 1 (DOCX 344 kb)

References

  1. 1.
    Vicens J, Böhmer V (eds) (1991) Calixarenes: a versatile class of macrocyclic compounds. Springer, NetherlandsGoogle Scholar
  2. 2.
    Haino T, Rudkevich DM, Shivanyuk A, Rissanen K, Rebek J Jr (2000) Induced-fit molecular recognition with water-soluble cavitands. Chem Eur J 6:3797–3805.  https://doi.org/10.1002/1521-3765(20001016)6:20%3c3797:aid-chem3797%3e3.0.co;2-1 CrossRefPubMedGoogle Scholar
  3. 3.
    Baudry R, Kalchenko O, Dumazet-Bonnamour I, Vocanson F, Lamartine R (2003) Investigation of host-guest stability constants of calix[n]arenes complexes with aromatic molecules by RP-HPLC method. J Chromatogr Sci 41:157–163.  https://doi.org/10.1093/chromsci/41.3.157 CrossRefPubMedGoogle Scholar
  4. 4.
    Athar M, Lone MY, Jha PC (2018) Recognition of anions using urea and thiourea substituted calixarenes: a density functional theory study of non-covalent interactions. Chem Phys 501:68–77.  https://doi.org/10.1016/j.chemphys.2017.12.002 CrossRefGoogle Scholar
  5. 5.
    Kumagai S, Hayashi K, Kameda T, Morohashi N, Hattori T, Yoshioka T (2018) Identification of number and type of cations in water-soluble Cs + and Na + calix[4]arene-bis-crown-6 complexes by using ESI-TOF-MS. Chemosphere 197:181–184.  https://doi.org/10.1016/j.chemosphere.2018.01.040 CrossRefPubMedGoogle Scholar
  6. 6.
    Arena G, Contino A, Gulino FG, Magrı̀ A, Sciotto D, Ungaro R (2000) Complexation of small neutral organic molecules by water soluble calix[4]arenes. Tetrahedron Lett 41:9327–9330.  https://doi.org/10.1016/s0040-4039(00)01687-7 CrossRefGoogle Scholar
  7. 7.
    Ortolan A, Oestroem I, Caramori G, Parreira R, Muñoz-Castro A, Bickelhaupt FM (2018) Anion recognition by organometallic calixarenes: analysis from relativistic DFT calculations. Organometallics.  https://doi.org/10.1021/acs.organomet.8b00292 CrossRefGoogle Scholar
  8. 8.
    Nagarajan A, Ka J-W, Lee C-H (2001) Synthesis of expanded calix[n]pyrroles and their furan or thiophene analogues. Tetrahedron 57:7323–7330.  https://doi.org/10.1016/S0040-4020(01)00719-0 CrossRefGoogle Scholar
  9. 9.
    Kaneko S, Inokuchi Y, Ebata T, Aprà E, Xantheas SS (2011) Laser spectroscopic and theoretical studies of encapsulation complexes of calix[4]arene. J Phys Chem A 115:10846–10853.  https://doi.org/10.1021/jp204577j CrossRefPubMedGoogle Scholar
  10. 10.
    Ebata T, Hontama N, Inokuchi Y, Haino T, Aprà E, Xantheas SS (2010) Encapsulation of Ar(n) complexes by calix[4]arene: endo- vs. exo-complexes. Phys Chem Chem Phys 12:4569–4579.  https://doi.org/10.1039/b927441c CrossRefPubMedGoogle Scholar
  11. 11.
    Ede J, Cragg P, Sambrook M, Ede JA, Cragg PJ, Sambrook MR (2018) Comparison of binding affinities of water-soluble calixarenes with the organophosphorus nerve agent soman (GD) and commonly-used nerve agent simulants. Molecules 23:207.  https://doi.org/10.3390/molecules23010207 CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lapenta R, Simone NAD, Buonerba A, Talotta C, Gaeta C, Neri P, Grassi A, Milione S (2018) Dinuclear zirconium complex bearing a 1,5-bridged-calix[8]arene ligand as an effective catalyst for the synthesis of macrolactones. Catal Sci Technol 8:2716–2727.  https://doi.org/10.1039/C7CY02537H CrossRefGoogle Scholar
  13. 13.
    Rudkevich DM (2007) Cover picture: progress in supramolecular chemistry of gases. Eur J Organ Chem 2007:3245–3245.  https://doi.org/10.1002/ejoc.200790043 CrossRefGoogle Scholar
  14. 14.
    Sreedevi P, Nair JB, Preethanuj P, Jeeja BS, Suresh CH, Maiti KK, Varma RL (2018) Calix[4]arene based redox sensitive molecular probe for SERS guided recognition of labile iron pool in tumor cells. Anal Chem 90:7148–7153.  https://doi.org/10.1021/acs.analchem.8b01982 CrossRefPubMedGoogle Scholar
  15. 15.
    Mohan N, Suresh CH (2014) Anion receptors based on highly fluorinated aromatic scaffolds. J Phys Chem A 118:4315–4324.  https://doi.org/10.1021/jp5019422 CrossRefPubMedGoogle Scholar
  16. 16.
    Mishra S, Suryaprakash N, Mishra SK, Suryaprakash N (2017) intramolecular hydrogen bonding involving organic fluorine: NMR investigations corroborated by DFT-based theoretical calculations. Molecules 22:423.  https://doi.org/10.3390/molecules22030423 CrossRefGoogle Scholar
  17. 17.
    Pinjari RV, Khedkar JK, Gejji SP (2010) Cavity diameter and height of cyclodextrins and cucurbit[n]urils from the molecular electrostatic potential topography. J Incl Phenom Macrocycl Chem 66:371–380.  https://doi.org/10.1007/s10847-009-9657-z CrossRefGoogle Scholar
  18. 18.
    Onac C, Kaya A, Ataman D, Gunduz NA, Alpoguz HK (2018) The removal of Cr(VI) through polymeric supported liquid membrane by using calix[4]arene as a carrier. Chin J Chem Eng 22:1–52.  https://doi.org/10.1016/j.cjche.2018.01.029 CrossRefGoogle Scholar
  19. 19.
    Narkhede N, Uttam B, Rao CP (2018) Inorganic-organic covalent hybrid of polyoxometalate-calixarene: synthesis, characterization and enzyme mimetic activity. Inorg Chim Acta 483:337–342.  https://doi.org/10.1016/j.ica.2018.08.034 CrossRefGoogle Scholar
  20. 20.
    Mokhtari B, Pourabdollah K (2012) Applications of calixarene nano-baskets in pharmacology. J Incl Phenom Macrocycl Chem 73:1–15.  https://doi.org/10.1007/s10847-011-0062-z CrossRefGoogle Scholar
  21. 21.
    Hua B, Shao L, Zhang Z, Sun J, Yang J (2018) Pillar[6]arene/acridine orange host–guest complexes as colorimetric and fluorescence sensors for choline compounds and further application in monitoring enzymatic reactions. Sens Actuators B Chem 255:1430–1435.  https://doi.org/10.1016/j.snb.2017.08.141 CrossRefGoogle Scholar
  22. 22.
    Hashem H, Ibrahim AE, Elhenawee M (2014) Chromatographic analysis of some drugs employed in erectile dysfunction therapy: qualitative and quantitative studies using calixarene stationary phase. J Sep Sci 37:2814–2824.  https://doi.org/10.1002/jssc.201400276 CrossRefPubMedGoogle Scholar
  23. 23.
    Aksoy T, Erdemir S, Yildiz HB, Yilmaz M (2012) Novel water-soluble calix[4,6]arene appended magnetic nanoparticles for the removal of the carcinogenic aromatic amines. Water Air Soil Pollut 223:4129–4139.  https://doi.org/10.1007/s11270-012-1179-4 CrossRefGoogle Scholar
  24. 24.
    Yousaf A, Hamid SA, Bunnori NM, Ishola A (2015) Applications of calixarenes in cancer chemotherapy: facts and perspectives. Drug Des Devel Ther 9:2831–2838.  https://doi.org/10.2147/DDDT.S83213 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chemical Bonds without bonding electron density—does the difference electron‐density analysis suffice for a description of the chemical bond? Cremer—1984—Angewandte Chemie International Edition in English. Wiley Online Library.  https://doi.org/10.1002/anie.198406271 CrossRefGoogle Scholar
  26. 26.
    Peerannawar SR, Gejji SP (2012) Electronic structure, molecular electrostatic potential and spectral characteristics of pillar[6]arene hosts and their complexes with n-octyltriethylammonium ions. Phys Chem Chem Phys 14:8711–8722.  https://doi.org/10.1039/C2CP23280D CrossRefPubMedGoogle Scholar
  27. 27.
    Monascal Y, Cartaya L, Álvarez-Aular Á, Maldonado A, Chuchani G (2018) The ion pair mechanism in the thermal deamination of primary amines catalyzed by HBr in the gas phase: DFT and AIM analysis. Chem Phys Lett 703:117–123.  https://doi.org/10.1016/j.cplett.2018.05.015 CrossRefGoogle Scholar
  28. 28.
    G09 | Gaussian.com (2009). http://gaussian.com/glossary/g09/
  29. 29.
    Ghalkhani M, Salehi M, Beheshtian J (2018) DFT studies of functionalized carbon nanotubes as nanoadsorbent of a benzimidazole fungicide compound. J Math Nanosci 8:13–18.  https://doi.org/10.22061/jmns.2018.3612.1031 CrossRefGoogle Scholar
  30. 30.
    Sreejith SS, Nair A, Smolenski VA, Jasinski JP, Prathapachandra Kurup MR (2018) Cd(II) and Ni(II) complexes from aroyl hydrazones: unravelling the intermolecular interactions and electronic, crystal structures through experimental and theoretical studies. Inorg Chim Acta 469:264–279.  https://doi.org/10.1016/j.ica.2017.09.031 CrossRefGoogle Scholar
  31. 31.
    Biegler-König F, Schönbohm J (2002) Update of the AIM2000-program for atoms in molecules. J Comput Chem 23:1489–1494.  https://doi.org/10.1002/jcc.10085 CrossRefPubMedGoogle Scholar
  32. 32.
    Furer VL, Potapova LI, Kovalenko VI (2017) DFT study of hydrogen bonding and IR spectra of calix[6]arene. J Mol Struct 1128:439–447.  https://doi.org/10.1016/j.molstruc.2016.09.010 CrossRefGoogle Scholar
  33. 33.
    Castillo DJH, Castillo I (2011) Calix[8]arenes solid-state structures: derivatization and crystallization strategies. Curr Trends X-ray Crystallogr 22:1–2.  https://doi.org/10.5772/28408 CrossRefGoogle Scholar
  34. 34.
    Fecko CJ, Eaves JD, Loparo JJ, Tokmakoff A, Geissler PL (2003) Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301:1698–1702.  https://doi.org/10.1126/science.1087251 CrossRefPubMedGoogle Scholar
  35. 35.
    Furer VL, Vandyukov AE, Zaripov SR, Solovieva SE, Antipin IS, Kovalenko VI (2018) FT-IR and FT-Raman study of hydrogen bonding in p-alkylcalix[8]arenes. Vib Spectrosc 95:38–43.  https://doi.org/10.1016/j.vibspec.2018.01.006 CrossRefGoogle Scholar
  36. 36.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627.  https://doi.org/10.1021/j100096a001 CrossRefGoogle Scholar
  37. 37.
    Bloino J, Barone V (2012) A second-order perturbation theory route to vibrational averages and transition properties of molecules: general formulation and application to infrared and vibrational circular dichroism spectroscopies. J Chem Phys 136:124108.  https://doi.org/10.1063/1.3695210 CrossRefPubMedGoogle Scholar
  38. 38.
    Wallace BA, Janes RW (2009) Modern techniques for circular dichroism and synchrotron radiation circular dichroism spectroscopy. IOS Press, AmsterdamGoogle Scholar
  39. 39.
    Bader RFW (1994) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  40. 40.
    Monascal Y, Cartaya L, Álvarez-Aular Á, Maldonado A, Chuchani G (2018) The ion pair mechanism in the thermal deamination of primary amines catalyzed by HBr in the gas phase: DFT and AIM analysis. Chem Phys Lett 703:117–123.  https://doi.org/10.1016/j.cplett.2018.05.015 CrossRefGoogle Scholar
  41. 41.
    Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173.  https://doi.org/10.1016/S0009-2614(98)00036-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Advanced Materials and Interfaces (LIMA), Faculty of Science of MonastirUniversity of MonastirMonastirTunisia
  2. 2.Quantum Physics Laboratory, Faculty of ScienceUniversity of MonastirMonastirTunisia
  3. 3.Institute of Light and Matter, UMR5306 University of Lyon 1-CNRSUniversity of LyonVilleurbanne CedexFrance

Personalised recommendations