Skip to main content
Log in

Gas-phase reactivity tuned through the interaction with alkaline-earth derivatives

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The cooperativity between MX2:XH alkaline-earth bonds and XH:NH3 hydrogen bonds (M = Mg, Ca; X = F, Cl) was investigated at the G4 level of theory. The cooperativity between these two non-covalent linkages is extremely large, to the point that the increase in their bond dissociation enthalpies may be as large as 240%. More importantly, the weaker the interaction, the larger the increase, so in some cases the linkage that stabilizes the most is the alkaline-earth bond, whereas in others is the hydrogen bond. In all cases, the formation of the MX2:XH:NH3 ternary complex is followed by a spontaneous proton transfer, very much as previously found for the Be-containing analogues. Similarly, MX2:FCl:NH3 complexes evolve from a chlorine-shared ternary complex (MX2F···Cl···NH3) or from an ion pair (MX2F···NH3Cl+) if M = Ca. Although F is the only halogen without σ-hole, MgCl2 derivatives induce the appearance of a σ-hole on it, though less deep than those induced by BeCl2. We have also studied whether Mg and Ca bond-containing complexes MR2:FY (R = H, F, Cl; Y = NH2, OH, F, Cl) may react to form radicals, as it has been found for the Be-containing analogues. These interactions provoke a drastic decrease in the F–Y bond dissociation enthalpy, very much as the one reported for the corresponding Be-analogues, to the point that in some cases the formation of the corresponding MR2F + Y· radicals becomes exothermic. Hence, the general conclusion of this study is that Mg or Ca derivatives give place to similar or even larger perturbations on the electron density than those induced by Be, a result not easily predictable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mahadevi AS, Sastry GN (2016) Chem Rev 116:2775–2825

    Article  CAS  Google Scholar 

  2. Biedermann F, Schneider HJ (2016) Chem Rev 116:5216–5300

    Article  CAS  Google Scholar 

  3. Mó O, Yáñez M, Elguero J (1992) J Chem Phys 97:6628–6638

    Article  Google Scholar 

  4. Hurtado M, Yáñez M, Herrero R, Guerrero A, Dávalos JZ, Abboud J-LM, Khater B, Guillemin JC (2009) Chem Eur J 15:4622–4629

    Article  CAS  Google Scholar 

  5. Martín-Sómer A, Lamsabhi A, Yáñez M, Davalos JZ, Gonzalez J, Ramos R, Guillemin JC (2012) Chem Eur J 18:15699–15705

    Article  Google Scholar 

  6. Yáñez M, Mó O, Alkorta I, Elguero J (2013) Chem Eur J 35:11637–11643

    Article  Google Scholar 

  7. Albrecht L, Boyd RJ, Mó O, Yáñez M (2012) Phys Chem Chem Phys 14:14540–14547

    Article  CAS  Google Scholar 

  8. Mó O, Yáñez M, Alkorta I, Elguero J (2012) J Chem Theory Comput 8:2293–2300

    Article  Google Scholar 

  9. Albrecht L, Boyd RJ, Mó O, Yáñez M (2014) J Phys Chem A 118:4205–4213

    Article  CAS  Google Scholar 

  10. Yáñez M, Mó O, Alkorta I, Elguero J (2013) Chem Phys Lett 590:22–26

    Article  Google Scholar 

  11. Mó O, Yáñez M, Alkorta I, Elguero J (2014) Mol Phys 112:592–600

    Article  Google Scholar 

  12. Brea O, Mó O, Yáñez M, Alkorta I, Elguero J (2015) Chem Eur J 21:12676–12682

    Article  CAS  Google Scholar 

  13. Brea O, Alkorta I, Mó O, Yáñez M, Elguero J, Corral I (2016) Angew Chem Eng Int Ed 55:8736–8739

    Article  CAS  Google Scholar 

  14. Bauzá A, Frontera A (2017) Chem Eur J 23:5375–5380

    Article  Google Scholar 

  15. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:84108

    Article  Google Scholar 

  16. Møller C, Plesset M (1936) Phys Rev 46

  17. Krishnan R, Pople JA (1978) Int J Quantum Chem 14:91–100

    Article  CAS  Google Scholar 

  18. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  19. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon Press, Oxford

    Google Scholar 

  20. Savin A, Nesper R, Wengert S, Fäsler TF (1997) Angew Chem Int Ed Engl 36:1808–1832

    Article  CAS  Google Scholar 

  21. Weinhold F (1998) In: von Schleyer PR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, pp 1792–1811

    Google Scholar 

  22. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  23. Wiberg KB, Bader RFW, Lau CDH (1987) J Am Chem Soc 109:985–1001

    Article  CAS  Google Scholar 

  24. Tood AK (2017) Journal. AIMAll (Version 17.11.14)

  25. Noury S, Krokidis X, Fuster F, Silvi B (1999) Comput Chem 23:597–604

    Article  CAS  Google Scholar 

  26. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0. University of Wisconsin, Madison

  27. Alkorta I, Elguero J, Mó O, Yáñez M, Del Bene JE (2015) Phys Chem Chem Phys 17:2259–2267

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial support received from the Ministerio de Economía, Industria y Competitividad (Projects CTQ2015-63997-C2 and CTQ2016-76061-P), and Comunidad Autónoma de Madrid (S2013/MIT2841, Fotocarbon). The CTI (CSIC) and the Centro de Computación Científica of the UAM (CCC-UAM) are also acknowledged for their continued computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Yáñez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montero-Campillo, M.M., Brea, O., Mó, O. et al. Gas-phase reactivity tuned through the interaction with alkaline-earth derivatives. Theor Chem Acc 138, 62 (2019). https://doi.org/10.1007/s00214-019-2424-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2424-3

Keywords

Navigation