Advertisement

i-Motif DNA structures upon electric field exposure: completing the map of induced genetic errors

  • José P. Cerón-CarrascoEmail author
  • Denis Jacquemin
Regular Article

Abstract

The architecture of DNA is not exclusively assembled with a sequence of Watson–Crick guanine–cytosine (GC) and adenine–thymine (AT) base pairs. On the contrary, recent experiments have detected G-quadruplex structures in G-islands, whereas C-rich regions are organized as intercalated motif (i-motif) structures. In the latter, several hemiprotonated–cytosine dimers are inserted in a large repetitive series. Previous computational characterizations of the impact of external electric fields on DNA’s mutations were focused on understanding GC, AT and G-quadruplex species. The present work provides a first assessment of the influence of intense fields onto the structure of i-motifs with the aim of reaching a more accurate prediction of the stability of DNA under the exposure of physics agents. The performed calculations demonstrate that i-motifs are particularly sensitive to the applied fields.

Keywords

DNA Telomeres Mutation Proton transfer Density functional calculations 

Notes

Acknowledgements

This research used resources of CCIPL (Centre de Calcul Intensif des Pays de Loire) and Plataforma Andaluza de Bioinformática installed at the Universidad of Málaga, Spain.

References

  1. 1.
    Watson JD, Crick FHC (1953) Nature 171:737–738PubMedGoogle Scholar
  2. 2.
    Stillman B (1996) Science 274:1659–1664PubMedGoogle Scholar
  3. 3.
    Stein LD (2004) Nature 431:915–916PubMedGoogle Scholar
  4. 4.
    Carneiro T, Khair L, Reis CC, Borges V, Moser BA, Nakamura TM, Ferreira MG (2010) Nature 467:228–232PubMedPubMedCentralGoogle Scholar
  5. 5.
    Zeraati M, Langley DB, Schofield P, Moye AL, Rouet R, Hughes WE, Bryan TM, Dinger ME, Christ D (2018) Nat Chem 10:631–637PubMedGoogle Scholar
  6. 6.
    Brooks TA, Samantha K, Laurence H (2010) FEBS J 277:3459–3469PubMedPubMedCentralGoogle Scholar
  7. 7.
    Moye AL, Porter KC, Cohen SB, Phan T, Zyner KG, Sasaki N, Lovrecz GO, Beck JL, Bryan TM (2015) Nat Commun 6:7643PubMedPubMedCentralGoogle Scholar
  8. 8.
    Gajarský M, Živković ML, Stadlbauer P, Pagano B, Fiala R, Amato J, Tomáška L, Šponer J, Plavec J, Trantírek L (2017) J Am Chem Soc 139:3591–3594PubMedGoogle Scholar
  9. 9.
    Jacquemin D, Zúñiga J, Requena A, Cerón-Carrasco JP (2014) Acc Chem Res 47:2467–2474PubMedGoogle Scholar
  10. 10.
    Löwdin PO (1963) Rev Mod Phys 35:724–732Google Scholar
  11. 11.
    Löwdin PO, Pullman P (eds) (1964) Electronic aspects of biochemistry. Academic Press, New York, p 167Google Scholar
  12. 12.
    Wang W, Hellinga HW, Beese LS (2007) Proc Natl Acad Sci (PNAS) USA 108:17644–17648Google Scholar
  13. 13.
    Lin Y, Wang H, Gao S, Li R, Schaefer HF III (2012) J Phys Chem B 116:8908–8915PubMedGoogle Scholar
  14. 14.
    Xiao S, Wang L, Liu Y, Lin X, Liang H (2012) J Chem Phys 137:195101PubMedGoogle Scholar
  15. 15.
    Kimsey IJ, Petzold K, Sathyamoorthy B, Stein ZW, Al-Hashimi HM (2015) Nature 519:315–320PubMedPubMedCentralGoogle Scholar
  16. 16.
    Ceron-Carrasco JP, Jacquemin D (2015) Phys Chem Chem Phys 17:7754–7760PubMedGoogle Scholar
  17. 17.
    Cerón-Carrasco JP, Requena A, Zúñiga J, Jacquemin D (2015) Front Chem 3:13PubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhang C, Xie L, Ding Y, Sun Q, Xu W (2016) ACS Nano 10:3776–3782PubMedGoogle Scholar
  19. 19.
    Phol R, Socha O, Slaviček, Šála M, Hodgkinson P (2018) Faraday Discuss 212:331–344Google Scholar
  20. 20.
    Cerón-Carrasco JP, Jacquemin D (2011) Chem Phys Chem 12:2615–2623PubMedGoogle Scholar
  21. 21.
    Cerón-Carrasco JP, Requena A, Jacquemin D (2012) Theor Chem Acc 131:1188Google Scholar
  22. 22.
    Cerón-Carrasco JP, Jacquemin D, Cauët E (2012) Phys Chem Chem Phys 14:12457–12464PubMedGoogle Scholar
  23. 23.
    Cruz-Ortiz AF, Rossa M, Berthias F, Berdakin M, Maitre P, Pino GA (2017) J Phys Chem Lett 8:5501–5506PubMedGoogle Scholar
  24. 24.
    Arabi AA, Matta CF (2011) Phys Chem Chem Phys 13:13738–13748PubMedGoogle Scholar
  25. 25.
    Arabi AA, Matta CF (2018) Phys Chem Chem Phys 20:12406–12412PubMedGoogle Scholar
  26. 26.
    Arabi AA, Matta CF (2018) J Phys Chem B 122:8631–8641PubMedGoogle Scholar
  27. 27.
    Matta CF, Huang L, Massa L (2012) Future Med Chem 4:1873–1875PubMedGoogle Scholar
  28. 28.
    Cerón-Carrasco JP, Jacquemin D (2013) Phys Chem Chem Phys 15:4548–4553PubMedGoogle Scholar
  29. 29.
    Cerón-Carrasco JP, Jacquemin D (2013) Chem Commun 49:7578–7580Google Scholar
  30. 30.
    Cerón-Carrasco JP, Cerezo J, Jacquemin D (2014) Phys Chem Chem Phys 16:8243–8246PubMedGoogle Scholar
  31. 31.
    Cerón-Carrasco JP, Jacquemin D (2017) Phys Chem Chem Phys 19:9358–9365PubMedGoogle Scholar
  32. 32.
    Mir B, Serrano I, Buitrago D, Orozco M, Escaja N, González C (2017) J Am Chem Soc 139:13985–13988PubMedGoogle Scholar
  33. 33.
    Zhou ZJ, Li XP, Liu ZB, Li ZR, Huang XR, Sun CC (2011) J Phys Chem A 115:1418–1422PubMedGoogle Scholar
  34. 34.
    Gao J, Berden G, Rodgers MT, Oomens J (2016) Phys Chem Chem Phys 18:7269–7277PubMedGoogle Scholar
  35. 35.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167PubMedGoogle Scholar
  36. 36.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241Google Scholar
  37. 37.
    Gu J, Wang J, Leszczynski J, Xie Y, Schaefer HF III (2008) Chem Phys Lett 459:164–166Google Scholar
  38. 38.
    Zhao Y, Truhlar DG (2011) Chem Phys Lett 502:1–13Google Scholar
  39. 39.
    Lin Y, Wang H, Wu Y, Gao S, Schaefer HF III (2014) Phys Chem Chem Phys 16:6717–6725PubMedGoogle Scholar
  40. 40.
    Galano A, Alvarez-Idaboy JR (2012) Phys Chem Chem Phys 14:12476–12484PubMedGoogle Scholar
  41. 41.
    Wigner EZ (1941) Phys Chem 19:203–216Google Scholar
  42. 42.
    DiLabio GA, Johnson ER (2007) J Am Chem Soc 129:6199–6203PubMedGoogle Scholar
  43. 43.
    Schoenbach KH, Hargrave B, Joshi RP, Kolb JF, Nuccitelli R, Osgood C, Pakhomov A, Stacey M, Swanson RJ, White JA, Xiao S, Zhang J, Beebe SJ, Blackmore PF, Buescher ES (2007) IEEE Trans Dielectr Electr Insul 14:1088–1109Google Scholar
  44. 44.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093PubMedGoogle Scholar
  45. 45.
    Gaussian 16 Revision A03 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian Inc Wallingford CTGoogle Scholar
  46. 46.
    Mulliken R (1955) J Chem Phys 23:1833–1840Google Scholar
  47. 47.
    Zhou X, Liu X, Zhang X, Zhou R, He Y, Li Q, Wang Z, Zhang H (2012) Sci Rep 2:780PubMedPubMedCentralGoogle Scholar
  48. 48.
    Schirmer B, Grimme S (2010) Chem Commun 46:7942–7944Google Scholar
  49. 49.
    Loos PF, Dumont E, Laurent AD, Assfeld X (2009) Chem Phys Lett 475:120–123Google Scholar
  50. 50.
    Ambrosek D, Loos PF, Assfeld X, Daniel C (2010) J Inorg Biochem 104:893–901PubMedGoogle Scholar
  51. 51.
    Cauët E, Valiev M, Weare JH (2010) J Phys Chem B 114:5886–5894PubMedGoogle Scholar
  52. 52.
    Garrec J, Patel C, Rothlisberger U, Dumont E (2012) J Am Chem Soc 134:2111–2119PubMedGoogle Scholar
  53. 53.
    Russo N, Toscano M, Grand A (2001) J Am Chem Soc 123:10272–10279PubMedGoogle Scholar
  54. 54.
    Russo N, Toscano M, Grand A (2003) J Phys Chem A 107:11533–11538Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bioinformatics and High Performance Computing Research Group (BIO-HPC)Universidad Católica San Antonio de Murcia (UCAM)MurciaSpain
  2. 2.CEISAM UMR CNRS 6230Université de NantesNantesFrance
  3. 3.Institut Universitaire de FranceParisFrance

Personalised recommendations