Advertisement

Fluorination of benzene with disubstituted N-fluoropyridinium salts in acetonitrile solution: a DFT study

  • Xia Du
  • Hui ZhangEmail author
  • Yuan Yao
  • Yang Lu
  • Aihua Wang
  • Yang Wang
  • Zesheng Li
Regular Article
  • 21 Downloads

Abstract

In this work, fluorination activities of disubstituted N-fluoropyridinium salts on the substrate of benzene in acetonitrile solution have been investigated by density functional theory. At SMD-B3LYP/6-311G(d,p) level, geometry optimizations and frequency calculations of the reactants, transition states and products were carried out in 16 fluorination reaction channels. A high level of SMD-M06-2x/6-311++G(d,p) was used to correct the single-point energy of the stationary points based on the optimized structure. On the basis of 2-nitro-substituted N-fluoropyridinium salt, nitro, cyano, chloro, methoxy groups were substituted, respectively, at 3-,4-,5-,6-position on pyridine ring to further clarify the influence of substituents and substitution sites on fluorination activity. According to the obtained potential energy surface information and substituent effect analysis, the fluorination channel of 2,6-dinitro-substituted N-fluoropyridinium salt is the most effective because of the lowest reaction energy barrier; as a result among the 16 studied N-fluoropyridinium salts, 2,6-dinitro-substituted N-fluoropyridinium salt is the most promising fluorinating reagent.

Keywords

Fluorination Disubstituted N-fluoropyridinium salts Transition state Acetonitrile 

Notes

Acknowledgements

We thank the grid computing server provided by the Chinese Academy of Sciences. This work is supported by the National Basic Research Program of China (2012CB723308), the National Natural Science Foundation of China (51337002 and 50977019), the Doctoral Foundation by the Ministry of Education of China (20112303110005) and the Science Foundation for Distinguished Young Scholar of Heilongjiang Province (JC201206).

Compliance with ethical standards

Conflict of interest

The author declares that they have no conflict interest.

Supplementary material

214_2019_2417_MOESM1_ESM.docx (61 kb)
S1 The geometry coordinates of reactants, transition states and products of 16 fluorination reactions optimized at SMD-B3LYP/6-311G (d,p) level (DOCX 61 kb)

References

  1. 1.
    Roman P, Patricia EK, Luigi C, Laura F, Magnus R (2018) Metal-free catalytic asymmetric fluorination of keto esters using a combination of hydrogen fluoride (HF) and oxidant: experiment and computation. ACS Catal 8:2582–2588CrossRefGoogle Scholar
  2. 2.
    Alessandra C, Katrin CP, Andrew DW, Magdalena S (2017) Fluorinated nucleosides as an important class of anticancer and antiviral agents. Future Med Chem 9(15):1809–1833CrossRefGoogle Scholar
  3. 3.
    Guo RZ, Huang JC, Zhao XD (2018) Organo selenium-catalyzed oxidative allylic fluorination with electrophilic N–F Reagent. ACS Catal 8(2):926–930CrossRefGoogle Scholar
  4. 4.
    Song YC, Huo J, Zhang N, Bao JJ, Zhang XP, Ruan XH, He GH (2018) Structural characteristics of hydrated protons in ion conductive channels: synergistic effect of sulfonate group and fluorine studied by molecular dynamics simulation. J Phys Chem C 122(4):1982–1989CrossRefGoogle Scholar
  5. 5.
    Yamamoto K, Li JK, Garber JO, Julian DR, Gregoryb B, Jannik CB, Christophe G, Jérôme J, Maurice VG, Neese F, Ritter T (2018) Palladium-catalysed electrophilic aromatic C–H fluorination. Nature 554:511–514CrossRefGoogle Scholar
  6. 6.
    Timofeeva DS, Ofial AR, Herbert M (2018) Kinetics of electrophilic fluorinations of enamines and carbanions: comparison of the fluorinating power of N–F reagents. J Am Chem Soc 140:11474–11486CrossRefGoogle Scholar
  7. 7.
    Narayanam MK, Ma GY, Champagne PA, Houk KN, Murphy JM (2018) Nucleophilic F-18-fluorination of anilines via N-Arylsydnone intermediates. Synlett 29(9):1131–1135CrossRefGoogle Scholar
  8. 8.
    Pupo G, Ibba F, Ascough DMH, Vicini AC, Ricci P, Christensen KE, Pfeifer L, Morphy JR, Brown JM, Paton RS (2018) Asymmetric nucleophilic fluorination under hydrogen bonding phase-transfer catalysis. Science 360(6389):638CrossRefGoogle Scholar
  9. 9.
    Pliego JR (2018) Potassium fluoride activation for the nucleophilic fluorination reaction using 18-crown-6, [2.2.2]-cryptand, pentaethylene glycol and comparison with the new hydro-crown scaffold: a theoretical analysis. Org Biomol Chem 16(17):3127–3137CrossRefGoogle Scholar
  10. 10.
    Liu ZL, Chen H, Lv Y, Tan XQ, Shen HG, Yu HZ, Li CZ (2018) Radical carbofluorination of unactivated alkenes with fluoride ions. J Am Chem Soc 140(19):6169–6175CrossRefGoogle Scholar
  11. 11.
    Chen H, Liu ZL, Lv Y, Tan XQ, Shen HG, Yu HZ, Li CZ (2017) Selective radical fluorination of tertiary alkyl halides at room temperature. Angew Chem 56(48):15411–15415CrossRefGoogle Scholar
  12. 12.
    Li M, Zhou BY, Xue XS, Cheng JP (2017) Establishing the trifluoromethylthio radical donating abilities of electrophilic SCF3-transfer reagents. J Org Chem 82(16):8697–8702CrossRefGoogle Scholar
  13. 13.
    Umemoto T (2014) Exploration of fluorination reagents starting from FITS reagents. J Fluor Chem 167:3–15CrossRefGoogle Scholar
  14. 14.
    Wang Y, Qiao Y, Wei DH, Tang MS (2017) Computational study on NHC-catalyzed enantioselective and chemoselective fluorination of aliphatic aldehydes. Org Chem Front 4(10):1987–1998CrossRefGoogle Scholar
  15. 15.
    Yang JD, Wang Y, Xue XS, Cheng JP (2017) A systematic evaluation of the N–F bond strength of electrophilic N–F reagents: hints for atomic fluorine donating ability. J Org Chem 82:4129–4135CrossRefGoogle Scholar
  16. 16.
    Zhang X (2017) Persulfate-promoted benzylic mono- and difluorination: a mechanistic study. Comput Theor Chem 1119:10–18CrossRefGoogle Scholar
  17. 17.
    Quentin M, Damien T, Phil SB (2012) Intermolecular ritter-type C–H amination of unactivated sp3 carbons. J Am Chem Soc 134:2547–2550CrossRefGoogle Scholar
  18. 18.
    Claire CS, Remy H, Paquin JF (2015) Recent advances in radical fluorination. Synth Stuttg 47(17):2554–2569CrossRefGoogle Scholar
  19. 19.
    Ma XH, Diane M, Ralph G, Chen C, Biscoe MR (2017) Stereospecific electrophilic fluorination of alkylcarbastannatrane reagents. Angew Chem 56(41):12663–12667CrossRefGoogle Scholar
  20. 20.
    Li QW, Chen FL, Yang XJ (2015) Synthesis of substituted N–F benzenesulfonimides and comparison of their fluorination reactivity via their reactions with silylenol ethers. Chin J Org Chem 35(12):2604–2609CrossRefGoogle Scholar
  21. 21.
    Umemoto T, Fukami S, Tomizawa G, Harasawa K, Kawada K, Tomita K (1990) Power- and structure-variable fluorinating agents. The N-Fluoropyridinium salt system. J Am Chem Soc 112:8563–8575CrossRefGoogle Scholar
  22. 22.
    Du X, Zhang H, Yao Y, Lu Y, Wang AH, Li ZS (2018) Theoretical study on the fluorination of benzene with N-Fluoropyridinium salts in acetonitrile solution. Struct Chem.  https://doi.org/10.1007/s11224-018-1135-z CrossRefGoogle Scholar
  23. 23.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Jr J-A, Montgomery JE, Peralta F, Ogliaro M, Bearpark JJ, Heyd E, Brothers KN, Kudin VN, Staroverov R, Kobayashi J, Normand K, Raghavachari A, Rendell JC, Burant SS, Iyengar J, Tomasi M, Cossi N, Rega JM, Millam M, Klene JE, Knox JB, Cross V, Bakken C, Adamo J, Jaramillo R, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli JW, Ochterski RL, Martin K, Morokuma VG, Zakrzewski GA, Voth P, Salvador JJ, Dannenberg S, Dapprich AD, Daniels O, Farkas JB, Foresman JV, Ortiz J Cioslowski, Fox DJ (2009) Gaussian 09 (Revision A. 02). Gaussian Inc., WallingfordGoogle Scholar
  24. 24.
    Becke AD (1993) Becke’s three parameter hybrid method using the LYP correlation functional. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  25. 25.
    Lee C, Wang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev 37:785–789CrossRefGoogle Scholar
  26. 26.
    Du X, Zhang H, Lu Y, Wang AH, Shi P, Li ZS (2017) Fluorination reaction on an inactive sp3 C—H bond mediated by manganese porphyrin catalysts: a theoretical study. Comput Theor Chem 1115:330–334CrossRefGoogle Scholar
  27. 27.
    Gonzalez G, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154CrossRefGoogle Scholar
  28. 28.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  29. 29.
    Hammond GS (1955) A correlation of reaction rates. J Am Chem Soc 77:334–338CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xia Du
    • 1
  • Hui Zhang
    • 1
    Email author
  • Yuan Yao
    • 2
  • Yang Lu
    • 3
  • Aihua Wang
    • 1
  • Yang Wang
    • 1
  • Zesheng Li
    • 4
  1. 1.College of Material Science and Engineering, College of Chemical and Environmental EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China
  2. 2.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  3. 3.College of Materials and Chemical EngineeringHeilongjiang Institute of TechnologyHarbinPeople’s Republic of China
  4. 4.Key Laboratory of Cluster Science of Ministry of Education and School of ChemistryBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations