Advertisement

Role of alloying in Cu2O conversion anode for Li-ion batteries

  • G. K. Kiran
  • Ganga PeriyasamyEmail author
  • P. Vishnu Kamath
Regular Article
  • 16 Downloads

Abstract

The successful use of metal oxides as conversion anodes in Li-ion batteries invokes the formation and subsequent reductive decomposition of Li2O. Given the standard reduction potential of Li/Li+ couple, the reduction of Li2O to Li is a thermodynamic challenge. This work investigates the interaction of Li+ ions with a Cu2O matrix computationally using the first principles-based DFT + U methodology. Alloying of Cu and Li takes place more readily than Li2O formation in the early part of the charge cycle. Li2O formation is predicted in the later part of the charge cycle. We attribute the capacity fading observed in oxide conversion anodes to the irreversible accumulation of Li2O and the reversible charge storage capacity delivered by the conversion anodes to alloying. This work indicates that reversible alloying plays a far greater role in the charge–discharge process than is generally acknowledged.

Keywords

DFT + U Cu2Li-ion battery Anode 

Notes

Acknowledgements

GKK acknowledges the Council of Scientific and Industrial Research, Government of India (GOI), for the award of Senior Research Fellowship.

Supplementary material

214_2018_2412_MOESM1_ESM.doc (3.6 mb)
Supplementary material 1 (DOC 3702 kb)

References

  1. 1.
    Tarascon JM, Armand M (2001) Nature 414:359–367CrossRefGoogle Scholar
  2. 2.
    Goodenough JB, Park KS (2013) J Am Chem Soc 135:1167–1176CrossRefGoogle Scholar
  3. 3.
    Tarascon JM, Armand M (2008) Nature 451:652–657CrossRefGoogle Scholar
  4. 4.
    Scrosati B, Garche J (2010) J Power Sour 195:2419–2490CrossRefGoogle Scholar
  5. 5.
    Whittingham MS (2004) Chem Rev 104:4271–4301CrossRefGoogle Scholar
  6. 6.
    Goriparti S, Miele E, Angelis FD, Fabrizio ED, Zaccaria RP, Capiglia C (2014) J Power Sour 257:421–443CrossRefGoogle Scholar
  7. 7.
    Li CC, Wang YW (2013) J Power Sour 227:204–210CrossRefGoogle Scholar
  8. 8.
    Croguennec L, Palacin MR (2015) J Am Chem Soc 137:3140–3156CrossRefGoogle Scholar
  9. 9.
    Hou J, Shao Y, Ellis MW, Moore RB, Yi B (2011) Phys Chem Chem Phys 13:15384–15402CrossRefGoogle Scholar
  10. 10.
    Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Energy Environ Sci 2:638–654CrossRefGoogle Scholar
  11. 11.
    Zhou H, Zhu S, Hibino M, Honma I, Ichihara M (2003) Adv Mater 15:2107–2111CrossRefGoogle Scholar
  12. 12.
    Persson K, Sethuraman VA, Hardwick LJ, Hinuma Y, Meng YS, van der Ven A, Srinivasan V, Kostecki R, Ceder G (2010) J Phys Chem Lett 1:1176–1180CrossRefGoogle Scholar
  13. 13.
    Kaskhedikar NA, Maier J (2009) Adv Mater 21:2664–2680CrossRefGoogle Scholar
  14. 14.
    Casimir A, Zhang H, Ogoke O, Amine JC, Lu J, Wu G (2016) Nano Energy 27:359–376CrossRefGoogle Scholar
  15. 15.
    Hwang IS, Kim JC, Seo SD, Lee S, Lee JH, Kim DW (2012) Chem Commun 48:7061–7063CrossRefGoogle Scholar
  16. 16.
    Li H, Wang Z, Chen L, Huang X (2009) Adv Mater 21:4593–4607CrossRefGoogle Scholar
  17. 17.
    Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Energy Environ Sci 4:2682–2699CrossRefGoogle Scholar
  18. 18.
    Boyanov S, Annou K, Villevieille C, Pelosi M, Zitoun D, Monoconduit L (2008) Ionics 14:183–190CrossRefGoogle Scholar
  19. 19.
    Lai CH, Lu MY, Chen LJ (2012) J Mater Chem 22:19–30CrossRefGoogle Scholar
  20. 20.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496–499CrossRefGoogle Scholar
  21. 21.
    Badway F, Plitz I, Grugeon S, Laruelle S, Dollé M, Gozdz AS, Tarascon JM (2002) Electrochem Solid-State Lett 5(6):A115–A118CrossRefGoogle Scholar
  22. 22.
    Cao K, Jin T, Li Y, Jiao L (2017) Mater Chem Front 1:2213–2242CrossRefGoogle Scholar
  23. 23.
    Belliard F, Irvine JTS (2001) J Power Sour 97–98:219–222CrossRefGoogle Scholar
  24. 24.
    Wang L, Maxisch T, Ceder G (2006) Phys Rev B 73:195107–195112CrossRefGoogle Scholar
  25. 25.
    Scanlon DO, Morgan BJ, Watson GW (2009) J Chem Phys 131:124703–125710CrossRefGoogle Scholar
  26. 26.
    Mishra AK, Roldan A, de Leeuw NH (2016) J Phys Chem C 120:2198–2214CrossRefGoogle Scholar
  27. 27.
    Tahir D, Tougaard S (2012) J Phys Condens Mater 24:175002–175007CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Central CollegeBangalore UniversityBangaloreIndia

Personalised recommendations