Advertisement

Nitric oxide oxidation on warped nanographene (C80H30): a DFT study

  • Thantip Roongcharoen
  • Nawee KungwanEmail author
  • Rathawat Daengngern
  • Chanchai Sattayanon
  • Supawadee NamuangrukEmail author
Regular Article
  • 39 Downloads

Abstract

The possible use of the recently synthesized warped nanographene C80H30 for NO oxidation by O2 molecule has been investigated using density functional theory. The reaction starts with the adsorption and dissociation of O2 molecule on the central pentagon of C80H30 with the activation energies of 24.2–26.6 kcal/mol depending on the active sites. Then, the dissociated O atoms readily oxidize NO to NO2 twice. The first NO oxidation occurs with barrierless, while the second NO oxidation requires a small energy barrier of 16.0 kcal/mol. The low activation energy barrier pathway indicates high catalytic activity of this nanographene for NO oxidation. Charge analysis reveals that such high catalytic activity of nanographene is attributed to the charge transfer from the saddle-shaped C80H30 to the dissociated O atoms which makes it reactive to NO molecule. Desorption of NO2 product, which is the rate-limiting step of NO oxidation in some catalysts, is easily occurred in this nanographene (less than 2 kcal/mol), indicating the prevention of catalyst poisoning. This study suggests that C80H30 nanographene is a promising catalyst for NO removal in ambient condition.

Keywords

C80H30 DFT Warped nanographene Nitric oxide Oxidation mechanism 

Notes

Acknowledgements

T. Roongcharoen and C. Sattayanon would like to thank Young Scientist and Technologist Program (YSTP), Thailand Graduate Institute of Science and Technology (TGIST) and Clean Air Flagship Project for fellowships. N. Kungwan would like to thank Thailand Research Fund (Grant no. RSA6180044) and Center of Excellence in Materials Science and Technology, Chiang Mai University for financial support. S. Namuangruk acknowledges the Thailand Research Fund (Grant no. RSA6180080) for partially support. The Graduate School, Chiang Mai University, is also acknowledged. Computation resources were provided by the National e-Science Infrastructure Consortium (http://www.e-science.in.th) and Nanoscale Simulation Laboratory (SIM) at NANOTEC.

Supplementary material

214_2018_2407_MOESM1_ESM.pdf (358 kb)
Supplementary material 1 (PDF 358 kb)

References

  1. 1.
    Fritz A, Pitchon V (1997) The current state of research on automotive lean NOx catalysis. Appl Catal B 13(1):1–25.  https://doi.org/10.1016/S0926-3373(96)00102-6 CrossRefGoogle Scholar
  2. 2.
    Roy S, Baiker A (2009) NOx storage-reduction catalysis: from mechanism and materials properties to storage-reduction performance. Chem Rev 109(9):4054–4091.  https://doi.org/10.1021/cr800496f CrossRefPubMedGoogle Scholar
  3. 3.
    Hansen JE (1998) Sir John Houghton: global warming: the complete briefing. J Atmos Chem 30(3):409–412CrossRefGoogle Scholar
  4. 4.
    Lashof DA, Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature 344(6266):529CrossRefGoogle Scholar
  5. 5.
    Stern N, Peters S, Bakhshi V, Bowen A, Cameron C, Catovsky S, Crane D, Cruickshank S, Dietz S, Edmonson N (2006) Stern review: the economics of climate change, vol 30. HM Treasury, LondonGoogle Scholar
  6. 6.
    Liu L, Gao Y, Zhao P, Wang X, Feng G, Zhang R (2016) Pillared clay-supported gold catalysts for CO oxidation. RSC Adv 6(18):15121–15126.  https://doi.org/10.1039/C5RA26035C CrossRefGoogle Scholar
  7. 7.
    Yu X, Zhang X, Jin L, Feng G (2017) CO adsorption, oxidation and carbonate formation mechanisms on Fe3O4 surfaces. Phys Chem Chem Phys 19(26):17287–17299.  https://doi.org/10.1039/C7CP02760E CrossRefPubMedGoogle Scholar
  8. 8.
    Liu Y, Liu J, Feng G, Yin S, Cen W, Liu Y (2016) Interface effects for the hydrogenation of CO2 on Pt4/γ-Al2O3. Appl Surf Sci 386:196–201.  https://doi.org/10.1016/j.apsusc.2016.06.018 CrossRefGoogle Scholar
  9. 9.
    Ciardelli C, Nova I, Tronconi E, Chatterjee D, Burkhardt T, Weibel M (2007) NH3 SCR of NOx for diesel exhausts aftertreatment: role of NO2 in catalytic mechanism, unsteady kinetics and monolith converter modelling. Chem Eng Sci 62(18):5001–5006.  https://doi.org/10.1016/j.ces.2006.11.031 CrossRefGoogle Scholar
  10. 10.
    Maitarad P, Zhang D, Gao R, Shi L, Li H, Huang L, Rungrotmongkol T, Zhang J (2013) Combination of experimental and theoretical investigations of MnOx/Ce0.9Zr0.1O2 nanorods for selective catalytic reduction of NO with ammonia. J Phys Chem C 117(19):9999–10006.  https://doi.org/10.1021/jp400504m CrossRefGoogle Scholar
  11. 11.
    Gao R, Zhang D, Maitarad P, Shi L, Rungrotmongkol T, Li H, Zhang J, Cao W (2013) Morphology-dependent properties of MnOx/ZrO2–CeO2 nanostructures for the selective catalytic reduction of NO with NH3. J Phys Chem C 117(20):10502–10511.  https://doi.org/10.1021/jp400984z CrossRefGoogle Scholar
  12. 12.
    Maitarad P, Han J, Zhang D, Shi L, Namuangruk S, Rungrotmongkol T (2014) Structure–activity relationships of NiO on CeO2 nanorods for the selective catalytic reduction of NO with NH3: experimental and DFT studies. J Phys Chem C 118(18):9612–9620.  https://doi.org/10.1021/jp5024845 CrossRefGoogle Scholar
  13. 13.
    Han J, Zhang D, Maitarad P, Shi L, Cai S, Li H, Huang L, Zhang J (2015) Fe2O3 nanoparticles anchored in situ on carbon nanotubes via an ethanol-thermal strategy for the selective catalytic reduction of NO with NH3. Catal Sci Technol 5(1):438–446.  https://doi.org/10.1039/C4CY00789A CrossRefGoogle Scholar
  14. 14.
    Liu J, Kang L, Li H, Maitarad P, Zhang J, Shi L, Zhang D (2017) Mn–Fe bi-metal oxides in situ created on metal wire mesh as monolith catalysts for selective catalytic reduction of NO with NH3. RSC Adv 7(64):40444–40451.  https://doi.org/10.1039/C7RA05007K CrossRefGoogle Scholar
  15. 15.
    Mulla SS, Chen N, Cumaranatunge L, Blau GE, Zemlyanov DY, Delgass WN, Epling WS, Ribeiro FH (2006) Reaction of NO and O2 to NO2 on Pt: kinetics and catalyst deactivation. J Catal 241(2):389–399.  https://doi.org/10.1016/j.jcat.2006.05.016 CrossRefGoogle Scholar
  16. 16.
    Liu Z-P, Jenkins SJ, King DA (2003) Step-enhanced selectivity of NO reduction on platinum-group metals. J Am Chem Soc 125(48):14660–14661.  https://doi.org/10.1021/ja0372208 CrossRefPubMedGoogle Scholar
  17. 17.
    Thirunavukkarasu K, Thirumoorthy K, Libuda J, Gopinath CS (2005) A molecular beam study of the NO + CO reaction on Pd(111) surfaces. J Phys Chem B 109(27):13272–13282.  https://doi.org/10.1021/jp050478v CrossRefPubMedGoogle Scholar
  18. 18.
    Liu Z-P, Jenkins SJ, King DA (2004) Why is silver catalytically active for NO reduction? A unique pathway via an inverted (NO)2 dimer. J Am Chem Soc 126(23):7336–7340.  https://doi.org/10.1021/ja049126c CrossRefPubMedGoogle Scholar
  19. 19.
    Fajín JLC, Cordeiro MNDS, Gomes JRB (2010) DFT study on the reaction of NO oxidation on a stepped gold surface. Appl Catal A 379(1–2):111–120.  https://doi.org/10.1016/j.apcata.2010.03.010 CrossRefGoogle Scholar
  20. 20.
    Inui T, Iwamoto S, Kojo S, Shimizu S, Hirabayashi T (1994) Removal of nitric oxide on metallosilicate catalysts. Catal Today 22(1):41–57.  https://doi.org/10.1016/0920-5861(94)80091-X CrossRefGoogle Scholar
  21. 21.
    Inui T, Kojo S, Shibata M, Yoshida T, Iwamoto S (1991) No decomposition on Cu-incorporated A-zeolites under the reaction condition of excess oxygen with a small amount of hydrocarbons. In: Jacobs PA, Wichterlov B (eds) Studies in surface science and catalysis, vol 69. Elsevier, Amsterdam, pp 355–364.  https://doi.org/10.1016/S0167-2991(08)61588-8 CrossRefGoogle Scholar
  22. 22.
    Trout BL, Chakraborty AK, Bell AT (1996) Analysis of the thermochemistry of NOx decomposition over CuZSM-5 based on quantum chemical and statistical mechanical calculations. J Phys Chem 100(44):17582–17592.  https://doi.org/10.1021/jp961470b CrossRefGoogle Scholar
  23. 23.
    Kawakami K, Ogura M (2015) Theoretical investigation of novel two-step decomposition of nitric oxide over Fe(II) ion-exchanged zeolites using DFT calculations. Catal Today 242:343–350.  https://doi.org/10.1016/j.cattod.2014.05.026 CrossRefGoogle Scholar
  24. 24.
    Li X, Zhang S, Jia Y, Liu X, Zhong Q (2012) Selective catalytic oxidation of NO with O2 over Ce-doped MnOx/TiO2 catalysts. J Nat Gas Chem 21(1):17–24CrossRefGoogle Scholar
  25. 25.
    Loginov AY, Chapayeva AY, Chokayev HK, Ikonnikov IA (1993) Development of the rare earth-transition metal oxide catalysts active surface for industrial gas detoxication. Catal Today 17(1):85–93.  https://doi.org/10.1016/0920-5861(93)80011-O CrossRefGoogle Scholar
  26. 26.
    Miyadera T (1993) Alumina-supported silver catalysts for the selective reduction of nitric oxide with propene and oxygen-containing organic compounds. Appl Catal B 2(2):199–205.  https://doi.org/10.1016/0926-3373(93)80048-I CrossRefGoogle Scholar
  27. 27.
    Olsson L, Persson H, Fridell E, Skoglundh M, Andersson B (2001) A kinetic study of NO oxidation and NOx storage on Pt/Al2O3 and Pt/BaO/Al2O3. J Phys Chem B 105(29):6895–6906.  https://doi.org/10.1021/jp010324p CrossRefGoogle Scholar
  28. 28.
    Shen B, Lin X, Zhao Y (2013) Catalytic oxidation of NO with O2 over Pt/γ-Al2O3 and La0.8Sr0.2MnO3. Chem Eng J 222:9–15.  https://doi.org/10.1016/j.cej.2013.02.050 CrossRefGoogle Scholar
  29. 29.
    Maitarad P, Meeprasert J, Shi L, Limtrakul J, Zhang D, Namuangruk S (2016) Mechanistic insight into the selective catalytic reduction of NO by NH3 over low-valent titanium–porphyrin: a DFT study. Catal Sci Technol 6(11):3878–3885.  https://doi.org/10.1039/C5CY02116B CrossRefGoogle Scholar
  30. 30.
    Junkaew A, Meeprasert J, Jansang B, Kungwan N, Namuangruk S (2017) Mechanistic study of NO oxidation on Cr-phthalocyanine: theoretical insight. RSC Adv 7(15):8858–8865.  https://doi.org/10.1039/C7RA00525C CrossRefGoogle Scholar
  31. 31.
    Meeprasert J, Junkaew A, Kungwan N, Jansang B, Namuangruk S (2016) A Cr-phthalocyanine monolayer as a potential catalyst for NO reduction investigated by DFT calculations. RSC Adv 6(25):20500–20506.  https://doi.org/10.1039/C5RA25631C CrossRefGoogle Scholar
  32. 32.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRefGoogle Scholar
  33. 33.
    Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K (2013) A grossly warped nanographene and the consequences of multiple odd-membered-ring defects. Nat Chem 5(9):739–744.  https://doi.org/10.1038/nchem.1704 CrossRefPubMedGoogle Scholar
  34. 34.
    Dong H, Gilmore K, Lin B, Hou T, Lee S-T, Guo Z, Li Y (2015) Adsorption of metal adatom on nanographene: computational investigations. Carbon 89:249–259.  https://doi.org/10.1016/j.carbon.2015.03.046 CrossRefGoogle Scholar
  35. 35.
    Dai Y, Li Z, Yang J (2014) Density functional study of nonlinear optical properties of grossly warped nanographene C80H30. J Phys Chem C 118(6):3313–3318.  https://doi.org/10.1021/jp409899n CrossRefGoogle Scholar
  36. 36.
    Noguchi Y, Sugino O (2015) Symmetry breaking and excitonic effects on optical properties of defective nanographenes. J Chem Phys 142(6):064313CrossRefGoogle Scholar
  37. 37.
    Dai Y, Li Z, Yang J (2015) A density functional study of the nonlinear optical properties of edge-functionalized nonplanar nanographenes. ChemPhysChem 16(13):2783–2788.  https://doi.org/10.1002/cphc.201500400 CrossRefPubMedGoogle Scholar
  38. 38.
    Jameh-Bozorghi S, Soleymanabadi H (2017) Warped C80H30 nanographene as a chemical sensor for CO gas: DFT studies. Phys Lett A 381(6):646–651.  https://doi.org/10.1016/j.physleta.2016.11.039 CrossRefGoogle Scholar
  39. 39.
    Dai Y, Li Z, Yang J (2016) Distinct molecule adsorption behaviors on warped nanographene C80H30: a theoretical study. Carbon 100:428–434.  https://doi.org/10.1016/j.carbon.2016.01.039 CrossRefGoogle Scholar
  40. 40.
    Zakharov II, Minaev BF (2011) DFT calculations of the intermediate and transition state in the oxidation of NO by oxygen in the gas phase. Theor Exp Chem 47(2):93.  https://doi.org/10.1007/s11237-011-9188-8 CrossRefGoogle Scholar
  41. 41.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) 09, Revision D. 01. Gaussian Inc., WallingfordGoogle Scholar
  42. 42.
    Ditchfield R (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54(2):724–728.  https://doi.org/10.1063/1.1674902 CrossRefGoogle Scholar
  43. 43.
    Erikat IA, Hamad BA, Khalifeh JM (2012) A density functional study for adsorption and oxidation of NO on Ir (1 0 0) surface. Appl Catal A 449:9–14.  https://doi.org/10.1016/j.apcata.2012.09.042 CrossRefGoogle Scholar
  44. 44.
    Mulla SS, Chen N, Delgass WN, Epling WS, Ribeiro FH (2005) NO2 inhibits the catalytic reaction of NO and O2 over Pt. Catal Lett 100(3):267–270.  https://doi.org/10.1007/s10562-004-3466-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Thantip Roongcharoen
    • 1
    • 5
  • Nawee Kungwan
    • 1
    • 4
    Email author
  • Rathawat Daengngern
    • 2
  • Chanchai Sattayanon
    • 3
  • Supawadee Namuangruk
    • 3
    Email author
  1. 1.Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Department of Chemistry, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  3. 3.National Nanotechnology Center (NANOTEC)National Science and Technology Development Agency (NSTDA)Khlong LuangThailand
  4. 4.Center of Excellence in Materials Science and TechnologyChiang Mai UniversityChiang MaiThailand
  5. 5.The Graduate SchoolChiang Mai UniversityChiang MaiThailand

Personalised recommendations