Effects of substitutional Mo and Cr on site occupation and diffusion of hydrogen in the β-phase vanadium hydride by first principles calculations

  • Thi Viet Bac PhungEmail author
  • Hiroshi Ogawa
  • Van An Dinh
  • Oanh Hoang Nguyen
  • Yoji Shibutani
  • Kohta Asano
  • Yumiko Nakamura
  • Etsuo Akiba
Regular Article


The effects of substitutional Mo and Cr in β-phase VH0.5 and V1−xMxH0.5625 (M = Mo, Cr; x = 0, 0.0625, 0.125) on the site occupation and diffusion paths of hydrogen are investigated by quantum mechanical calculations based on density functional theory. Fundamental processes of the interstitial-assisted mechanisms are systematically figured out, and specific values of the site energies are obtained with zero-point energy (ZPE) corrections. Hydrogen atoms are found to occupy the octahedral (O) interstitial sites in β-phase (V + M)H0.5 in the ground state. Upon increasing the hydrogen concentration H/(V + M) higher than 0.5, the additional H atom prefers to reside at the tetrahedral (T) interstitial sites. The minimum energy paths of hydrogen diffusion are analyzed by the Nudged Elastic Band method with ZPE corrections. The site occupation energy and activation energy for each hydrogen diffusion path are found to be strongly influenced by the substitution of Mo or Cr into vanadium hydride. The results presented in this work indicate that the additional H prefers to migrate directly from T site to the nearest neighboring T site without crossing O site. The energy barriers in the order of 0.253–0.276 eV of hydrogen migration in the V1−xMxH0.5625 hydrides obtained from ab initio simulations are in good agreement with the experimental data by means of 1H NMR measurement.


Hydrogen storage vanadium hydrides Mo/Cr substitution Hydrogen diffusion DFT calculations 



The authors are thankful to the project on the establishment of Master’s in Nanotechnology program of Vietnam Japan University for providing the facilities. This work was supported in part by a grant for research from Vietnam National University, Hanoi (VNU) under project number QG.15.09.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

214_2018_2405_MOESM1_ESM.docx (67 kb)
Supplementary material 1 (DOCX 66 kb)


  1. 1.
    Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300:1127CrossRefGoogle Scholar
  2. 2.
    Sakintunaa B, Darkrimb FL, Hirscherc M (2007) Int J Hydrogen Energy 32:1121CrossRefGoogle Scholar
  3. 3.
    Schlapbach L, Züttel A (2001) Nature 414:353CrossRefGoogle Scholar
  4. 4.
    Hauck J, Schenk HJ (1977) J. Less-Common Metals 51:251CrossRefGoogle Scholar
  5. 5.
    Schober T, Wenzl H (1978) In: Alefeld G, Volkl J (eds) Hydrogen in metals II, topics in applied physics: application-oriented properties, vol 29. Springer, BerlinGoogle Scholar
  6. 6.
    Matsunaga T, Kon M, Washio K, Shinozawa T, Ishikiriyama M (2009) Int J Hydrogen Energy 34:1458CrossRefGoogle Scholar
  7. 7.
    Fukai Y (2005) The metal-hydrogen system. Springer, BerlinGoogle Scholar
  8. 8.
    Akiba E, Iba H (1998) Intermetallics 6:461CrossRefGoogle Scholar
  9. 9.
    Kubo K, Itoh H, Takahashi T, Ebisawa T, Kabutomori T, Nakamura Y, Akiba E (2003) J Alloys Compd 452:356Google Scholar
  10. 10.
    Shibuya M, Nakamura J, Enoki H, Akiba E (2009) J Alloys Compd 475:543–545CrossRefGoogle Scholar
  11. 11.
    Tominaga Y, Nishimura S, Amemiya T, Fuda T, Tamura T, Kuriiwa T, Kamegawa A, Okada M (1999) Mater Trans, JIM 40(9):871CrossRefGoogle Scholar
  12. 12.
    Kuriiwa T, Tamura T, Amemiya T, Fuda T, Kamegawa A, Takamura H, Okada M (1999) J Alloys Compd 433:293Google Scholar
  13. 13.
    Tamura T, Kamegawa A, Takamura H, Okada M (1862) Mater Trans 2001:42Google Scholar
  14. 14.
    Tamura T, Kazumi T, Kamegawa A, Takamura H, Okada M (2002) Mater Trans 42:2753CrossRefGoogle Scholar
  15. 15.
    Asano K, Hayashi S, Nakamura Y, Akiba E (2010) J Alloys Compd 507:399CrossRefGoogle Scholar
  16. 16.
    Asano K, Hayashi S, Nakamura Y, Akiba E (2012) J Alloys Compd 524:63CrossRefGoogle Scholar
  17. 17.
    Johansson R, Ahuja R, Eriksson O, Hjorvarsson B, Scheicher RH (2015) Sci Rep 5:10301CrossRefGoogle Scholar
  18. 18.
    Kim J, Yoo J-H, Cho S-W (2014) Mater Chem Phys 48:533CrossRefGoogle Scholar
  19. 19.
    Schulz R, Boily S, Zaluski L, Zaluka A, Tessier P, Strom-Olsen JO (1995) Innov Metal Mater 63:529Google Scholar
  20. 20.
    Mananes A, Duque F, Mendez F, Lopez MJ, Alonso JA (2003) J Chem Phys 119:5128CrossRefGoogle Scholar
  21. 21.
    Yarovskya I, Goldbergb A (2005) Mol Simul 31:475CrossRefGoogle Scholar
  22. 22.
    Masuda J, Hashizume K, Otsuka T, Tanabe T, Hatano Y, Nakamura Y, Nagasaka T, Muroga T (2007) J Nucl Mater 1256:363Google Scholar
  23. 23.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  24. 24.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
  25. 25.
    Kresse G, Hafner J (1993) Phys Rev B 47:558CrossRefGoogle Scholar
  26. 26.
    Kresse G, Joubert D (1999) Phys Rev 59:1758CrossRefGoogle Scholar
  27. 27.
    Kresse G, Hafner J (1994) Phys Rev B 49:14251CrossRefGoogle Scholar
  28. 28.
    Kresse G, Furthmller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  29. 29.
    Vanderbilt D (1990) Phys Rev B 41:7892CrossRefGoogle Scholar
  30. 30.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  31. 31.
    Methfessel M, Paxton AT (1989) Phys Rev B 40:3616CrossRefGoogle Scholar
  32. 32.
    Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:9901CrossRefGoogle Scholar
  33. 33.
    Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:254CrossRefGoogle Scholar
  34. 34.
    Sanville E, Kenny SD, Smith SD, Henkelman G (2007) J Comput Chem 28:899CrossRefGoogle Scholar
  35. 35.
    Tang W, Sanville E, Henkelman G (2009) J Phys: Condens Matter 21:084204Google Scholar
  36. 36.
    Noda Y, Masumoto K, Koike S, Suzuki T, Sato S (1986) Acta Cryst B42:529CrossRefGoogle Scholar
  37. 37.
    Kajitani T, Hirabayashi M (1985) Zeitschrift fur Physikalische Chemie Neue Folge, Bd 145:S27CrossRefGoogle Scholar
  38. 38.
    Ogawa H (2013) J Alloys Compd 580:S131CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanotechnology ProgramVNU Vietnam Japan UniversityHanoiVietnam
  2. 2.National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 5TsukubaJapan
  3. 3.Center for Atomic and Molecular Technologies, Graduate School of EngineeringOsaka UniversitySuitaJapan
  4. 4.VNU University of ScienceHanoiVietnam
  5. 5.Department of Mechanical Engineering, Faculty of EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations