Advertisement

Formation of OH radicals from the simplest Criegee intermediate CH2OO and water

  • Wen-mei Wei
  • Shi Hong
  • Wei-jun Fang
  • Ren-hui ZhengEmail author
  • Yi-de QinEmail author
Regular Article
  • 62 Downloads

Abstract

Hydroxyl (OH) radicals can convert nitrogen and sulfur oxides to nitric and sulfuric acid, respectively, and oxidize nonmethane hydrocarbons to organic acids, which play an important key role in the environmental chemistry. The famous Criegee intermediates (CIs) are also key species in atmospheric chemistry. The most important loss paths that control CIs levels are suggested to be the reaction with water vapor. To study the reaction mechanism of the simplest CI (CH2OO) with H2O, stationary species and saddle points on the potential energy surface (PES) of CH2OO + H2O have been investigated at CCSD(T)/AUG-cc-pVTZ//B3LYP/6-311++G(2d,2p) level of theory. The computational results indicate that the most feasible channel for the reaction of CH2OO with H2O produces HOCH2O and hydroxyl radicals (OH). Because the highest Gibbs free energy barrier is only 10.5 kcal/mol, this path will be active in atmosphere and OH radical can be produced in this process. Besides, we find a transition state which has not been reported before and explained the mechanism of the formation of a key intermediate. We also scan the formation PES of OH radical from an intermediate and find a loose transition state, which illustrates the mechanism of the producing of OH radical in the reaction of CH2OO with H2O. Here we present a new way of producing OH radicals.

Keywords

Criegee intermediate Ab initio calculations OH formation Potential energy surface Reaction mechanism 

Notes

Acknowledgements

This work is supported by Key Project of Natural Science Research Fund for Colleges and Universities in Anhui Province (No. KJ2018A0173) and National Natural Science Foundation of China (NNSF) (No. 91856122).

References

  1. 1.
    Johnson D, Marston G (2008) The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere. Chem Soc Rev 37(4):699–716PubMedCrossRefGoogle Scholar
  2. 2.
    Taatjes CA, Welz O, Eskola AJ, Savee JD, Scheer AM, Shallcross DE, Rotavera B, Lee EPF, Dyke JM, Mok DKW, Osborn DL, Percival CJ (2013) Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO. Science 340(6129):177–180PubMedCrossRefGoogle Scholar
  3. 3.
    Taatjes CA, Shallcross DE, Percival C (2014) Research frontiers in the chemistry of Criegee intermediates and tropospheric ozonolysis. Phys Chem Chem Phys 16(5):1704–1718PubMedCrossRefGoogle Scholar
  4. 4.
    Criegee R, Wenner G (1949) Die ozonisierung des 9,10-Oktalins. Liebigs Ann Chem 564(1):9–15CrossRefGoogle Scholar
  5. 5.
    Taatjes CA, Meloni G, Selby TM, Trevitt AJ, Osborn DL, Percival CJ, Shallcross DE (2008) Direct observation of the gas-phase Criegee intermediate (CH2OO). J Am Chem Soc 130(36):11883–11885PubMedCrossRefGoogle Scholar
  6. 6.
    Welz O, Savee JD, Osborn DL, Vasu SS, Percival CJ, Shallcross DE, Taatjes CA (2012) Direct kinetic measurements of Criegee intermediate (CH2OO) formed by reaction of CH2I with O2. Science 335(6065):204–207PubMedCrossRefGoogle Scholar
  7. 7.
    Beames JM, Liu F, Lu L, Lester MI (2012) Ultraviolet spectrum and photochemistry of the simplest Criegee intermediate CH2OO. J Am Chem Soc 134(49):20045–20048PubMedCrossRefGoogle Scholar
  8. 8.
    Su Y-T, Huang Y-H, Witek HA, Lee Y-P (2013) Infrared absorption spectrum of the simplest Criegee intermediate CH2OO. Science 340(6129):174–176PubMedCrossRefGoogle Scholar
  9. 9.
    Nakajima M, Endo YJ (2013) Communication: determination of the molecular structure of the simplest Criegee intermediate CH2OO. J Chem Phys 139(10):101103PubMedCrossRefGoogle Scholar
  10. 10.
    Su Y-T, Lin H-Y, Putikam R, Matsui H, Lin MC, Lee Y-P (2014) Extremely rapid self-reaction of the simplest Criegee intermediate CH2OO and its implications in atmospheric chemistry. Nat Chem 6(6):477–483PubMedCrossRefGoogle Scholar
  11. 11.
    Vereecken L, Harder H, Novelli A (2012) The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere. Phys Chem Chem Phys 14(42):14682–14695PubMedCrossRefGoogle Scholar
  12. 12.
    Horie O, Moortgat GK (1991) Decomposition pathways of the excited Criegee intermediates in the ozonolysis of simple alkenes. Atmos Environ 25(9):1881–1896CrossRefGoogle Scholar
  13. 13.
    Mauldin RL III, Berndt T, Sipila M, Paasonen P, Petaja T, Kim S, Kurten T, Stratmann F, Kerminen VM, Kulmala M (2012) A new atmospherically relevant oxidant of sulphur dioxide. Nature 488(7410):193–196PubMedCrossRefGoogle Scholar
  14. 14.
    Berndt T, Jokinen T, Mauldin RL, Petaja T, Herrmann H, Junninen H, Paasonen P, Worsnop DR, Sipila M (2012) Gas-phase ozonolysis of selected olefins: the yield of stabilized Criegee intermediate and the reactivity toward SO2. J Phys Chem Lett 3(19):2892–2896CrossRefGoogle Scholar
  15. 15.
    Berndt T, Kaethner R, Voigtländer J, Stratmann F, Pfeifle M, Reichle P, Sipilä M, Kulmala M, Olzmann M (2015) Kinetics of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions. Phys Chem Chem Phys 17(30):19862–19873PubMedCrossRefGoogle Scholar
  16. 16.
    Anglada JM, Gonza′lez J, Torrent-Sucarrat M (2011) Effects of the substituents on the reactivity of carbonyl oxides. A theoretical study on the reaction of substituted carbonyl oxides with water. Phys Chem Chem Phys 13(28):13034–13045PubMedCrossRefGoogle Scholar
  17. 17.
    Vereecken L, Francisco JS (2012) Theoretical studies of atmospheric reaction mechanisms in the troposphere. Chem Soc Rev 41(19):6259–6293PubMedCrossRefGoogle Scholar
  18. 18.
    Ouyang B, McLeod MW, Jones RL, Bloss WJ (2013) NO3 radical production from the reaction between the Criegee intermediate CH2OO and NO2. Phys Chem Chem Phys 15(40):17070–17075PubMedCrossRefGoogle Scholar
  19. 19.
    Stone D, Blitz M, Daubney L, Howes NUM, Seakins P (2014) Kinetics of CH2OO reactions with SO2, NO2, NO, H2O and CH3CHO as a function of pressure. Phys Chem Chem Phys 16(3):1139–1149PubMedCrossRefGoogle Scholar
  20. 20.
    Newland MJ, Rickard AR, Alam MS, Vereecken L, Munoz A, Rodenas M, Bloss WJ (2015) Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions. Phys Chem Chem Phys 17(6):4076–4088PubMedCrossRefGoogle Scholar
  21. 21.
    Aplincourt P, Ruiz-López MF (2000) Theoretical investigation of reaction mechanisms for carboxylic acid formation in the atmosphere. J Am Chem Soc 122(37):8990–8997CrossRefGoogle Scholar
  22. 22.
    Crehuet R, Anglada JM, Bofill JM (2001) Tropospheric formation of hydroxymethyl hydroperoxide, formic acid, H2O2, and OH from carbonyl oxide in the presence of water vapor: a theoretical study of the reaction mechanism. Chem Eur J 7(10):2227–2235PubMedCrossRefGoogle Scholar
  23. 23.
    Ryzhkov AB, Ariya PA (2003) A theoretical study of the reactions of carbonyl oxide with water in atmosphere: the role of water dimer. Chem Phys Lett 367(3–4):423–429CrossRefGoogle Scholar
  24. 24.
    Lin L, Chang H, Chang C, Chao W, Smith MC, Chang C, Lin JJ, Takahashi K (2016) Competition between H2O and (H2O)2 reactions with CH2OO/CH3CHOO. Phys Chem Chem Phys 18(6):4557–4568PubMedCrossRefGoogle Scholar
  25. 25.
    Chen L, Wang W, Wang W, Liu Y, Liu F, Liu N, Wang B (2016) Water-catalyzed decomposition of the simplest Criegee intermediate CH2OO. Theor Chem Acc 135(5):131CrossRefGoogle Scholar
  26. 26.
    Halakeyama S, Bandow H, Okuda M, Akimoto H (1981) Reactions of peroxymethylene and methylene (1A1) with water in the gas phase. J Phys Chem 85(15):2249–2254CrossRefGoogle Scholar
  27. 27.
    Paulson SE, Flagan RC, Seinfeld JH (1992) Atmospheric photooxidation of isoprene part 11: the ozone-isoprene reaction. Int J Chem Kinet 24(1):103–125CrossRefGoogle Scholar
  28. 28.
    Becker KH, Bechara J, Brockmann KJ (1993) Studies on the formation of H2O2 in the ozonolysis of alkenes. Atmos Environ 27(1):57–61CrossRefGoogle Scholar
  29. 29.
    Neeb P, Sauer F, Horie O, Moortgat GK (1997) Formation of hydroxymethyl hydroperoxide and formic acid in alkene ozonolysis in the presence of water vapour. Atmos Environ 31(10):1417–1423CrossRefGoogle Scholar
  30. 30.
    Neeb P, Moortgat GK (1999) Formation of OH radicals in the gas-phase reaction of propene, isobutene, and isoprene with O3: yields and mechanistic implications. J Phys Chem A 103(45):9003–9012CrossRefGoogle Scholar
  31. 31.
    Hasson AS, Chung MY, Kuwata KT, Converse AD, Krohn D, Paulson SE (2003) Reaction of Criegee intermediates with water vapor—an additional source of OH radicals in alkene ozonolysis? J Phys Chem A 107(32):6176–6182CrossRefGoogle Scholar
  32. 32.
    Alam MS, Camredon M, Rickard AR, Carr T, Wyche KP, Hornsby KE, Monks PS, Bloss WJ (2011) Total radical yields from tropospheric ethene ozonolysis. Phys Chem Chem Phys 13(23):11002–11015PubMedCrossRefGoogle Scholar
  33. 33.
    Leather KE, McGillen MR, Cooke MC, Utembe SR, Archibald AT, Jenkin ME, Derwent RG, Shallcross DE, Percival CJ (2012) Acid-yield measurements of the gas-phase ozonolysis of ethene as a function of humidity using chemical ionisation mass spectrometry (CIMS). Atmos Chem Phys 12(1):469–479CrossRefGoogle Scholar
  34. 34.
    Thompson AM (1992) The oxidizing capacity of the earth’s atmosphere: probable past and future changes. Science 256(5060):1157–1165PubMedCrossRefGoogle Scholar
  35. 35.
    Penkett SA, Jones BMR, Brice KA, Eggleton AEJ (1979) The importance of atmospheric ozone and hydrogen peroxide in oxidizing sulphur dioxide in cloud and rainwater. Atmos Environ 13(1):123–137CrossRefGoogle Scholar
  36. 36.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  37. 37.
    Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  38. 38.
    Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree–Fock, Møller–Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100(41):16502–16513CrossRefGoogle Scholar
  39. 39.
    Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90(4):2154–2161CrossRefGoogle Scholar
  40. 40.
    Bartlett RJ, Purvis G (1978) Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem. Int J Quantum Chem 14(5):561–581CrossRefGoogle Scholar
  41. 41.
    Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. J Chem Phys 90(2):1007–1023CrossRefGoogle Scholar
  42. 42.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96(9):6796–6806CrossRefGoogle Scholar
  43. 43.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian Inc., WallingfordGoogle Scholar
  44. 44.
    Rienstra-Kiracofe JC, Allen WD, Schaefer HF III (2000) The C2H5 + O2 reaction mechanism: high-level ab initio characterizations. J Phys Chem A 104(44):9823–9840CrossRefGoogle Scholar
  45. 45.
    Anglada JM, Solé A (2016) Impact of the water dimer on the atmospheric reactivity of carbonyl oxides. Phys Chem Chem Phys 18(26):17698–17712PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, College of Basic MedicineAnhui Medical UniversityHefeiPeople’s Republic of China
  2. 2.Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of ChemistryChinese Academy of SciencesZhongguancun, BeijingPeople’s Republic of China
  3. 3.Department of Biochemistry and Molecular Biology, College of Basic MedicineAnhui Medical UniversityHefeiPeople’s Republic of China

Personalised recommendations