Density functional studies on structural, electronic and magnetic properties of Rhn (n = 9–20) clusters and O–H bond of methanol activation by pure and ruthenium-doped rhodium clusters

  • Abhijit Dutta
  • Paritosh MondalEmail author
Regular Article


Methodical exploration is performed on Rhn (n = 9–20) clusters in the gas phase with all electron relativistic methods using density functional theory (DFT) within the generalized gradient approximation. Neutral clusters with even atoms of rhodium and ionic clusters containing odd atoms of rhodium are optimized with odd multiplicities, while neutral clusters containing odd rhodium atoms and ionic cluster having even atoms of rhodium are optimized with even multiplicities. DFT-based structural and reactivity parameters such as stability function, dissociation energy, HOMO–LUMO gap, ionization potential and electron affinity reveal higher stability of Rh13, Rh14 and Rh19 clusters. Among these clusters, icosahedral Rh13 is obtained to be the most stable. Magnetic moment and spin density analysis suggest nonzero magnetic moment for all clusters. DOS study reveals higher contribution of d electron density in bonding. Further, stable rhodium cluster-catalyzed O–H bond activation of methanol has been investigated. Rh 13 and Rh14 are found to have higher activity towards O–H activation. Ruthenium-doped rhodium clusters have also been utilized to investigate the reactivity and catalytic activity of the same reaction and found to exhibit higher activity. Among all alloy clusters, Rh18Ru dissociates O–H more easily.


DFT Rhodium Stability Ruthenium-doped cluster O–H activation 



Authors thank Department of Science and Technology (DST), New Delhi, India, for financial support (SB/EMEQ-214/2013).

Supplementary material

214_2018_2399_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)


  1. 1.
    Proceedings of the sixth international meeting on small particles and inorganic clusters. Chicago (1992). Z Phys D 26 (1993)Google Scholar
  2. 2.
    Wohlfarth EP (1985) Phys Status Solidi (a) 91:339CrossRefGoogle Scholar
  3. 3.
    Zapkin MR, Cox DM, Brickman RO, Kaldor AJ (1989) J Phys Chem 93:6823CrossRefGoogle Scholar
  4. 4.
    Gingerich KA, Cocke DL (1972) J Chem Soc Chem Commun 1:536CrossRefGoogle Scholar
  5. 5.
    Wang H, Haouari H, Craig R, Liu Y, Lombardi JR, Lindsay DM (1997) J Chem Phys 106:2101CrossRefGoogle Scholar
  6. 6.
    Cox AJ, Louderback JG, Bloomfield LA (1993) Phys Rev Lett 71:923PubMedCrossRefGoogle Scholar
  7. 7.
    Cox AJ, Louderback JG, Apsel SE, Bloomfield LA (1994) Phys Rev B 49:12295CrossRefGoogle Scholar
  8. 8.
    Van Zee RJ, Hamrick YM, Li S, Weltner W (1992) Chem Phys Lett 195:214CrossRefGoogle Scholar
  9. 9.
    Shim I (1985) Mat Fys Medd Dan Vid Selsk 41:147Google Scholar
  10. 10.
    Balasubramanian K, Liao DW (1989) J Phys Chem 93:3989CrossRefGoogle Scholar
  11. 11.
    Illas F, Rubio J, Canellas J, Ricart JM (1990) J Chem Phys 93:2603CrossRefGoogle Scholar
  12. 12.
    Goursot A, Papai I, Daul CA (1994) Int J Quantum Chem 52:799CrossRefGoogle Scholar
  13. 13.
    Jinlong Y, Toigo F, Kelin W (1994) Phys Rev B 50:7915CrossRefGoogle Scholar
  14. 14.
    Galicia R (1985) Rev Mex Fis 32:51Google Scholar
  15. 15.
    Reddy BV, Khanna SN, Dunlap BI (1993) Phys Rev Lett 70:3323PubMedCrossRefGoogle Scholar
  16. 16.
    Lee K (1997) Z Phys D Atoms Mol Clusters 40:164CrossRefGoogle Scholar
  17. 17.
    Guirado-Lopez R, Spanjaard D, Desjonqueres MC, Aguilera-Granja F (1998) J Magn Magn Mater 186:214CrossRefGoogle Scholar
  18. 18.
    Guevara J, Llois AM, Aguilera-Granja F, Montejano-Carrizales JM (1999) Solid State Commun 111:335CrossRefGoogle Scholar
  19. 19.
    Li ZQ, Yu JZ, Ohno K, Kawazoe Y (1995) J Phys Condens Matter 7:47CrossRefGoogle Scholar
  20. 20.
    Piveteau B, Desjongueres MC, Oles AM, Spanjaard D (1996) Phys Rev B 53:9251CrossRefGoogle Scholar
  21. 21.
    Zhang GW, Feng YP, Ong CK (1996) Phys Rev B 54:17208CrossRefGoogle Scholar
  22. 22.
    Nayak SK, Weber SE, Jena P, Wildberger K, Zeller R, Dederichs PH, Stepanyuk VS, Hergert W (1997) Phys Rev B 56:8849CrossRefGoogle Scholar
  23. 23.
    Villasenor-Gonzalez P, Dorantes-Davila J, Dreysse H, Pastor GM (1997) Phys Rev B 55:15084CrossRefGoogle Scholar
  24. 24.
    Chien CH, Barojas EB, Pederson MR (1998) Phys Rev A 58:2196CrossRefGoogle Scholar
  25. 25.
    Guirado-Lopez R, Spanjaard D, Desjonqueres MC (1998) Phys Rev B 57:6305CrossRefGoogle Scholar
  26. 26.
    Reddy BV, Nayak SK, Khanna SN, Rao BK, Jena P (1999) Phys Rev B 59:5214CrossRefGoogle Scholar
  27. 27.
    Granja FA, Rodriguez-Lopez JL, Michaelian K, Berlanga-Ramirez EO, Vega A (2002) Phys Rev B 66:224410CrossRefGoogle Scholar
  28. 28.
    Parks EK, Nieman GC, Kerns KP, Riely SJ (1997) J Chem Phys 107:1861CrossRefGoogle Scholar
  29. 29.
    Xing X, Yoon B, Landman U, Parks JH (2006) Phys Rev B 74:165423CrossRefGoogle Scholar
  30. 30.
    Gruene P, Rayner DM, Redlich B, van der Meer AFG, Lyon JT, Meijer G, Fielicke A (2008) Science 321:674PubMedCrossRefGoogle Scholar
  31. 31.
    Kumar V, Kawazoe Y (2002) Phys Rev B 66:144413CrossRefGoogle Scholar
  32. 32.
    Kumar V, Kawazoe Y (2003) Eur Phys J D 24:81CrossRefGoogle Scholar
  33. 33.
    Barreteau C, Guirado-Lopez R, Spanjaard D, Desjonqueres MC, Oles AM (2000) Phys Rev B 61:7781CrossRefGoogle Scholar
  34. 34.
    Guirado-Lopez R, Desjonqueres MC, Spanjaard D (2000) Phys Rev B 62:13188CrossRefGoogle Scholar
  35. 35.
    Morrison SR (1977) The chemical physics of surfaces. Plenum Pres, New YorkCrossRefGoogle Scholar
  36. 36.
    Somorjai GA (1994) Introduction to surface chemistry and catalysis. John Wiley and Sons, New YorkGoogle Scholar
  37. 37.
    Hopstaken MJP, Niemantsverdriet JW (2000) J Chem Phys 113:5457CrossRefGoogle Scholar
  38. 38.
    Campbell CT, Shi SK, White JM (1979) J Phys Chem 83:2255CrossRefGoogle Scholar
  39. 39.
    Colonell JI, Gibson KD, Sibener SJ (1995) J Chem Phys 103:6677CrossRefGoogle Scholar
  40. 40.
    Peden CHF, Goodman DW, Blair DS, Berlowitz PJ, Fisher GB, Oh SH (1988) J Phys Chem 92:1563CrossRefGoogle Scholar
  41. 41.
    Garin F (2001) Appl Catal A 222:183CrossRefGoogle Scholar
  42. 42.
    Comelli G, Dhanak VR, Kiskinova M, Prince KC, Rosei R (1998) Surf Sci Rep 32:165CrossRefGoogle Scholar
  43. 43.
    Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Science 287:1989PubMedCrossRefGoogle Scholar
  44. 44.
    Chung SH, Hoffmann A, Guslienko K, Bader SD, Liu C, Kay B, Makowski L, Chen L (2005) J Appl Phys 97:10R101CrossRefGoogle Scholar
  45. 45.
    Nam JM, Thaxton CS, Mirkin CA (2003) Science 301:1884PubMedCrossRefGoogle Scholar
  46. 46.
    Tsang SC, Yu CH, Gao X, Tam K (2006) J Phys Chem B 110:16914PubMedCrossRefGoogle Scholar
  47. 47.
    Burgel C, Reilly NM, Johnson GE, Mitric R, Kimble ML, Castleman AW, Koutecky VB (2008) J Am Chem Soc 130:1694PubMedCrossRefGoogle Scholar
  48. 48.
    Hanmura T, Ichihashi M, Watanabe Y, Isomura N, Kondow T (2007) J Phys Chem A 111:422PubMedCrossRefGoogle Scholar
  49. 49.
    Swart I, Fielicke A, Redlich B, Meijer G, Weckhuysen BM, de Groot FMF (2007) J Am Chem Soc 129:2516PubMedCrossRefGoogle Scholar
  50. 50.
    Anderson ML, Ford MS, Derrick PJ, Drewello T, Woodruff DP, Mackenzie SR (2006) J Phys Chem A 110:10992PubMedCrossRefGoogle Scholar
  51. 51.
    Ford MS, Anderson ML, Barrow MP, Woodruff DP, Drewello T, Derrick PJ, Mackenzie SR (2005) Phys Chem Chem Phys 7:975PubMedCrossRefGoogle Scholar
  52. 52.
    Dutta A, Mondal P (2017) Comp Theo Chem 1115:284CrossRefGoogle Scholar
  53. 53.
    Dutta A, Mondal P (2018) J Chem Sci 130:1CrossRefGoogle Scholar
  54. 54.
    Delley B, Ellis DE (1982) J Chem Phys 76:1949CrossRefGoogle Scholar
  55. 55.
    Delley B (2000) J Chem Phys 113:7756CrossRefGoogle Scholar
  56. 56.
    Delley B (1990) J Chem Phys 92:508CrossRefGoogle Scholar
  57. 57.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  58. 58.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  59. 59.
    Delley B (1998) Int J Quantum Chem 69:423CrossRefGoogle Scholar
  60. 60.
    Parr RG, Yang W (1984) J Am Chem Soc 106:4049CrossRefGoogle Scholar
  61. 61.
    Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708PubMedCrossRefGoogle Scholar
  62. 62.
    Ghatak K, Sengupta T, Pal S (2015) Theor Chem Acc 134:1597CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryAssam UniversitySilcharIndia

Personalised recommendations