Spherical aromaticity and electron delocalization in \({\text{C}}_8\) and \({\text{B}}_4{\text{N}}_4\) cubic systems

  • Buse Chaglayan
  • Ahmad W. HuranEmail author
  • Nadia Ben Amor
  • Véronique Brumas
  • Stefano Evangelisti
  • Thierry Leininger
Regular Article
Part of the following topical collections:
  1. In Memoriam of János Ángyán


The electronic structure of the two isoelectronic species \({\text{C}}_8\) and \({\text{B}}_4{\text{N}}_4\) has been studied at several ab initio levels (Hartree–Fock, CASSCF, CASPT2, and coupled cluster). For both systems, the total position spread tensor and the electron entropy have been computed and compared. These quantities are indicators that give insight into the electron mobility (and, in the case of the spread, the behavior of different-spin electrons), and are a measure of the multi-reference character of an electronic wavefunction. Our results indicate that the two systems are deeply different. In fact, the \({\text{C}}_8\) cluster shows a pronounced multi-reference character. The \({\text{B}}_4{\text{N}}_4\) system, on the other hand, is very well described by a single reference wave function. Analysis of ground-state electronic structure unveils different electron delocalization behavior in the studied systems.


Cubic clusters Electronic structure Electron delocalization Spherical aromaticity 



This work was partly supported by the French “Centre National de la Recherche Scientifique” (CNRS, also under the PICS action 4263). It has received fundings from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 642294. This work was also supported by the Programme Investissements d’Avenir under the Program ANR-11-IDEX-0002-02, reference ANR-10-LABX-0037-NEXT. The calculations of this work have been partly performed by using the resources of the HPC center CALMIP under the Grant 2016-p1048. One of us (AWH) acknowledges the support of the “Theoretical Chemistry and Computational Modelling” (TCCM) Erasmus-Plus Master program. Finally, we would like to thank Ulf Saalman (Max-Planck-Institut für Physik komplexer Systeme, Dresden), for interesting discussion and suggestions.


  1. 1.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162. CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Bühl M, Hirsch A (2001) Chem Rev 101(5):1153. CrossRefPubMedGoogle Scholar
  4. 4.
    Poater J, Sola M (2011) Chem Commun 47:11647. CrossRefGoogle Scholar
  5. 5.
    Chen Z, Jiao H, Hirsch A, Thiel W (2001) J Mol Model 7(5):161CrossRefGoogle Scholar
  6. 6.
    Sharapa D, Hirsch A, Meyer B, Clark T (2015) Chem Phys Chem 16(10):2165. CrossRefPubMedGoogle Scholar
  7. 7.
    Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Chem Rev 105(10):3842CrossRefGoogle Scholar
  8. 8.
    Merino G, Heine T, Seifert G (2004) Chem Eur J 10(17):4367CrossRefGoogle Scholar
  9. 9.
    Gomes J, Mallion R (2001) Chem Rev 101(5):1349CrossRefGoogle Scholar
  10. 10.
    Schleyer PvR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJ (1996) J Am Chem Soc 118(26):6317CrossRefGoogle Scholar
  11. 11.
    Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2006) Org Lett 8(5):863CrossRefGoogle Scholar
  12. 12.
    Corminboeuf C, Heine T, Weber J (2003) Phys Chem Chem Phys 5(2):246CrossRefGoogle Scholar
  13. 13.
    Corminboeuf C, King RB, Schleyer PvR (2007) Chem Phys Chem 8(3):391CrossRefGoogle Scholar
  14. 14.
    Kudinov EK (1999) Phys Solid State 41(9):1450CrossRefGoogle Scholar
  15. 15.
    Resta R (2006) J Chem Phys 124(10):104104CrossRefGoogle Scholar
  16. 16.
    Resta R, Sorella S (1999) Phys Rev Lett 82(2):370CrossRefGoogle Scholar
  17. 17.
    Ángyán JG (2009) Int J Quantum Chem 109(11):2340CrossRefGoogle Scholar
  18. 18.
    Ángyán JG (2011) Curr Org Chem 15(20):3609CrossRefGoogle Scholar
  19. 19.
    El Khatib M, Brea O, Fertitta E, Bendazzoli GL, Evangelisti S, Leininger T (2015) J Chem Phys 142(9):094113CrossRefGoogle Scholar
  20. 20.
    Knowles PJ, Werner HJ (1985) Chem Phys Lett 115(3):259. CrossRefGoogle Scholar
  21. 21.
    Roos BO, Taylor PR, Siegbahn PE (1980) Chem Phys 48(2):157. CrossRefGoogle Scholar
  22. 22.
    Jensen F (1993) Chem Phys Lett 209(4):417. CrossRefGoogle Scholar
  23. 23.
    Manaa M (2001) J Mol Struct Theochem 549(1):23. CrossRefGoogle Scholar
  24. 24.
    Hampel C, Peterson KA, Werner HJ (1992) Chem Phys Lett 190(1–2):1. CrossRefGoogle Scholar
  25. 25.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157(6):479. CrossRefGoogle Scholar
  26. 26.
    Bartlett RJ, Watts J, Kucharski S, Noga J (1990) Chem Phys Lett 165(6):513. CrossRefGoogle Scholar
  27. 27.
    Bartlett RJ, Watts J, Kucharski S, Noga J (1990) Chem Phys Lett 167(6):609. CrossRefGoogle Scholar
  28. 28.
    Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98(11):8718. CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Werner HJ, Knowles PJ, Knizia G, Manby FR, Schtz M, Celani P, Gyrffy W, Kats D, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Kppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, O’Neill DP, Palmieri P, Peng D, Pflger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M (2015) MOLPRO, version 2015.1, a package of ab initio programsGoogle Scholar
  31. 31.
    Andersson K, Malmqvist PA, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94(14):5483. CrossRefGoogle Scholar
  32. 32.
    Aquilante F, De Vico L, Ferré N, Ghigo G, Malmqvist På, Neogrády P, Pedersen TB, Pitoňák M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R (2010) J Comput Chem 31(1):224. CrossRefPubMedGoogle Scholar
  33. 33.
    Veryazov V, Widmark PO, Serrano-Andrés L, Lindh R, Roos BO (2004) Int J Quantum Chem 100(4):626. CrossRefGoogle Scholar
  34. 34.
    Karlström G, Lindh R, Malmqvist PÅ, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) Comput Mater Sci 28(2):222. CrossRefGoogle Scholar
  35. 35.
    Widmark PO, Malmqvist PÅ, Roos BO (1990) Theor Chim Acta 77(5):291. CrossRefGoogle Scholar
  36. 36.
    El Khatib M, Leininger T, Bendazzoli GL, Evangelisti S (2014) Chem Phys Lett 591:58CrossRefGoogle Scholar
  37. 37.
    Huran AW, Leininger T, Bendazzoli GL, Evangelisti S (2016) Chem Phys Lett 664:120CrossRefGoogle Scholar
  38. 38.
    Ziesche P (2000) J Mol Struct Theochem 527(1–3):35CrossRefGoogle Scholar
  39. 39.
    Gori-Giorgi P (2002) Phys Rev B 66:235116CrossRefGoogle Scholar
  40. 40.
    Janssen CL, Nielsen IM (1998) Chem Phys Lett 290(4–6):423. CrossRefGoogle Scholar
  41. 41.
    Nielsen IM, Janssen CL (1999) Chem Phys Lett 310(5–6):568. CrossRefGoogle Scholar
  42. 42.
    Lee TJ (2003) Chem Phys Lett 372(3–4):362. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Chimie et Physique Quantiques, CNRS, UT3-Paul SabatierUniversité de ToulouseToulouse CedexFrance
  2. 2.Instituto de Ciencia MolecularUniversitat de ValènciaValenciaSpain
  3. 3.Institut für PhysikMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany

Personalised recommendations