Advertisement

The formation of urea in space. II. MP2 versus PM6 dynamics in determining bimolecular reaction products

  • Yannick Jeanvoine
  • Riccardo Spezia
Regular Article
Part of the following topical collections:
  1. In Memoriam of János Ángyán

Abstract

In the present work, we have investigated the possibility of forming protonated urea in the gas phase by means of chemical dynamics simulations. Based on previously published highly correlated quantum chemistry calculations (Astron. Astrophys. 610, A26, 2018), we have considered the reaction between the high energy tautomer of protonated hydroxylamine (NH2OH2+) and neutral formamide. Simulations were made at MP2 level and using three semi-empirical Hamiltonians which allow better statistics. In particular, we have considered the PM6 method and two different dispersion corrections. These more approximated methods show results which are in relatively good agreement with MP2, in particular for the reaction which is potentially responsible for the urea synthesis. Results show that precursor of protonated urea can be formed but this species will evolve with difficulty into the structure of urea in ultra-vacuum conditions. It is likely that the presence of mantle ice would facilitate the overall reaction process.

Keywords

Reaction dynamics Astrochemistry Prebiotic chemistry Bimolecular collisions 

Notes

Acknowledgements

We thank ANR DynBioReact (Grant No. ANR-14-CE06-0029-01) and CNRS program INFINITI (Project ASTROCOL) for financial support. This article is dedicated to the memory of Dr. János G. ÁNGYÁN, who directed the Ph. D. Thesis of one of us (YJ). We hope we will pass on the values and commitment we learned from him to those we work with and hopefully we will be able to do it with János’s humor and joy.

References

  1. 1.
    Menten KM, Wyrowski F (2011) In: Yamada KMT, Winnewisser G (eds) Interstellar molecules. Springer, Berlin, pp 27–42Google Scholar
  2. 2.
    Petrie S, Bohme DK (2007) Mass Spectrom Rev 26:258–280PubMedGoogle Scholar
  3. 3.
    Ohishi M (2016) J Phys Conf Ser 728:052002Google Scholar
  4. 4.
    Larsson M, Geppert WD, Nyman G (2012) Rep Prog Phys 75:066901PubMedGoogle Scholar
  5. 5.
    Rubin RH, Swenson GW Jr, Solomon RC, Flygare HL (1971) Astrophys J 169:L39–L44Google Scholar
  6. 6.
    Turner BE, Liszt HS, Kaifu N, Kisliakov AG (1975) Astrophys J 201:L149–L152Google Scholar
  7. 7.
    Hollis JM, Lovas FJ, Remijan AJ, Jewell PR, Ilyushin VV, Kleiner I (2006) Astrophys J 643:L25–L28Google Scholar
  8. 8.
    Goesmann F, Rosenbauer H, Bredehöft JH, Cabane M, Ehrenfreund P, Gautier T, Giri C, Krüger H, Le Roy L, MacDermott AJ, McKenna-Lawlor S, Meierhenrich UJ, Muñoz Caro GM, Raulin F, Roll R, Steele A, Steininger H, Sternberg R, Szopa C, Thiemann W, Ulamec S (2015) Science 349:aab0689PubMedGoogle Scholar
  9. 9.
    Remijan AJ, Hollis JM, Lovas FJ, Stork WD, Jewell PR, Meier PR (2008) Astrophys J 675:L85–L88Google Scholar
  10. 10.
    Kaifu N, Morimoto M, Nagane K, Akabane K, Iguchi T, Takagi K (1974) Astrophys J 191:L135–L137Google Scholar
  11. 11.
    Fourikis N, Takagi K, Morimoto M (1974) Astrophys J 191:L139–L141Google Scholar
  12. 12.
    Belloche A, Menten KM, Comito C, Müller HSP, Schilke P, Ott J, Thorwirth S, Hieret C (2008) Astron Astrophys 482:179–196Google Scholar
  13. 13.
    Belloche A, Meshcheryakov AA, Garrod RT, Ilyushin VV, Alekseev EA, Motiyenko RA, Margulès L, Müller HSP, Menten KM (2017) Astron Astrophys 601:A49Google Scholar
  14. 14.
    Remijan AJ, Snyder LE, McGuire BA, Kuo H-L, Looney LW, Friedel DN, Golubiatnikov GY, Lovas FJ, Ilyushin VV, Alekseev EA, Dyubko SF, McCall BJ, Hollis JM (2014) Astrophys J 783:77Google Scholar
  15. 15.
    McGuire BA, Burkhardt AM, Kalenski S, Shingledecker CN, Remijan AJ, Herbst E, McCarthy MC (2018) Science 359:202–205PubMedGoogle Scholar
  16. 16.
    Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E (2012) Chem Soc Rev 41:5526–5565PubMedGoogle Scholar
  17. 17.
    Saitta AM, Saija F (2014) Proc Natl Acad Sci USA 111:13768–13773Google Scholar
  18. 18.
    Kaiser RI (2002) Chem Rev 102:1309–1358PubMedGoogle Scholar
  19. 19.
    Geppert WD, Larsson M (2013) Chem Rev 113:8872–8905PubMedGoogle Scholar
  20. 20.
    de Marcellus P, Meinert C, Myrgorodsk I, Nahon L, Buhse T, Le d’Hendecourt LS, Meierhenrich UJ (2015) Proc Natl Acad Sci USA 112:965–970PubMedGoogle Scholar
  21. 21.
    Forstel M, Maksyutenko P, Jones BM, Sun B-J, Chang AHH, Kaiser RI (2016) Chem Commun 52:741–744Google Scholar
  22. 22.
    Nuevo M, Milam SN, Sandford SA, Elsila JE, Dworkin JP (2009) Astrobiology 9:683–695PubMedGoogle Scholar
  23. 23.
    Rodriguez-Lazcano Y, Maté B, Herrero VJ, Escribano R, Galvez O (2014) Phys Chem Chem Phys 16:3371–3380PubMedGoogle Scholar
  24. 24.
    Herbst E (1982) Chem Phys 65:185–195Google Scholar
  25. 25.
    Ferriere KM (2001) Rev Mod Phys 73:1031–1066Google Scholar
  26. 26.
    Barone V, Latouche C, Skouteris D, Vazart F, Balucani N, Ceccarelli C, Lefloch B (2015) Mon Not R Astron Soc 453:L31Google Scholar
  27. 27.
    Vazart F, Calderini D, Puzzarini C, Skouteris D, Barone V (2016) J Chem Theory Comput 12:5385–5397PubMedPubMedCentralGoogle Scholar
  28. 28.
    Skouteris D, Balucani N, Ceccarelli C, Vazart F, Puzzarini C, Barone V, Codella C, Lefloch B (2018) Astrophys J 854:135Google Scholar
  29. 29.
    Redondo P, Barrientos C, Largo A (2014) Astrophys J 793:32Google Scholar
  30. 30.
    Redondo P, Barrientos C, Largo A (2014) Astrophys J 780:181Google Scholar
  31. 31.
    Barrientos C, Redondo P, Largo L, Rayon VM, Largo A (2012) Astrophys J 748:99Google Scholar
  32. 32.
    Snow JL, Orlova G, Blagojevic V, Bohme DK (2007) J Am Chem Soc 129:9910–9917PubMedGoogle Scholar
  33. 33.
    Siro Brigiano F, Jeanvoine Y, Largo A, Spezia R (2018) Astron Astrophys 610:A26Google Scholar
  34. 34.
    Spezia R, Jeanvoine Y, Hase WL, Song K, Largo A (2016) Astrophys J 826:107Google Scholar
  35. 35.
    Jeanvoine Y, Largo A, Hase WL, Spezia R (2018) J Phys Chem A 122:869–877PubMedGoogle Scholar
  36. 36.
    Pulliam RL, McGuire BA, Remijan AJ (2012) Astrophys J 751:1Google Scholar
  37. 37.
    Grimme S (2004) J Comput Chem 25:1463–1473PubMedGoogle Scholar
  38. 38.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104PubMedGoogle Scholar
  39. 39.
    Sato F, Hasegawa T, Whiteoak JB, Miyawaki R (2000) Astrophys J 535:857Google Scholar
  40. 40.
    Dowell CD, Hildebrand RH, Schleuning DA, Vaillancourt JE, Dotson JL, Novak G, Renbarger T, Houde M (1998) Astrophys J 504:588Google Scholar
  41. 41.
    Stewart JJP (2007) J Mol Model 13:1173–1213PubMedPubMedCentralGoogle Scholar
  42. 42.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian09, Revision D.01. Gaussian Inc, WallingfordGoogle Scholar
  43. 43.
    Stewart JJP, Fiedler LJ, Zheng J, Rossi I, Hu W-P, Lynch GC, Liu Y-P, Zhang P, Chuang Y-Y, Pu J, Li J, Fast PL, Cramer CJ, Gao J, Truhlar DG, MOPAC version 5.022mn based on MOPAC 5.0 by James J. P. StewartGoogle Scholar
  44. 44.
    Song K, Spezia R (2018) Theoretical mass spectrometry. De Gruyter, BerlinGoogle Scholar
  45. 45.
    Hase WL, Ludlow DM, Wolf RJ, Schlick T (1981) J Phys Chem 85:958–968Google Scholar
  46. 46.
    Verlet L (1967) Phys Rev 159:98Google Scholar
  47. 47.
    Hu X, Hase WL, Pirraglia T (1991) J Comput Chem 12:1014–1024Google Scholar
  48. 48.
    Hase WL, Duchovic RJ, Hu X, Komornicki A, Lim KF, Lu D-H, Peslherbe GH, Swamy KN, Linde SRV, Varandas A et al (1996) QCPE Bull 16:671Google Scholar
  49. 49.
    Su T, Chesnavich WJ (1982) J Chem Phys 75:5183–5185Google Scholar
  50. 50.
  51. 51.
    Baer T, Hase WL (1996) Unimolecular reaction dynamics: theory and experiments. Oxford University Press, New YorkGoogle Scholar
  52. 52.
    Beyer T, Swinehart DF (1973) Commun ACM 16:379Google Scholar
  53. 53.
    Zhu L, Hase WL (1994) QCPE Bull 14:664Google Scholar
  54. 54.
    Pratihar S, Ma X, Homayoon Z, Barnes GL, Hase WL (2017) J Am Chem Soc 139:3570–3590PubMedGoogle Scholar
  55. 55.
    Cao J, Voth GA (1994) J Chem Phys 100:5093Google Scholar
  56. 56.
    Craig IR, Manolopoulos DE (2004) J Chem Phys 121:3368PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LAMBE, Univ Evry, CNRS, CEAUniversité Paris-SaclayEvryFrance
  2. 2.CNRS, Laboratoire de Chimie ThéoriqueSorbonne UniversitéParis Cedex 05France

Personalised recommendations