The formation of urea in space. II. MP2 versus PM6 dynamics in determining bimolecular reaction products

  • Yannick JeanvoineEmail author
  • Riccardo SpeziaEmail author
Regular Article
Part of the following topical collections:
  1. In Memoriam of János Ángyán


In the present work, we have investigated the possibility of forming protonated urea in the gas phase by means of chemical dynamics simulations. Based on previously published highly correlated quantum chemistry calculations (Astron. Astrophys. 610, A26, 2018), we have considered the reaction between the high energy tautomer of protonated hydroxylamine (NH2OH2+) and neutral formamide. Simulations were made at MP2 level and using three semi-empirical Hamiltonians which allow better statistics. In particular, we have considered the PM6 method and two different dispersion corrections. These more approximated methods show results which are in relatively good agreement with MP2, in particular for the reaction which is potentially responsible for the urea synthesis. Results show that precursor of protonated urea can be formed but this species will evolve with difficulty into the structure of urea in ultra-vacuum conditions. It is likely that the presence of mantle ice would facilitate the overall reaction process.


Reaction dynamics Astrochemistry Prebiotic chemistry Bimolecular collisions 



We thank ANR DynBioReact (Grant No. ANR-14-CE06-0029-01) and CNRS program INFINITI (Project ASTROCOL) for financial support. This article is dedicated to the memory of Dr. János G. ÁNGYÁN, who directed the Ph. D. Thesis of one of us (YJ). We hope we will pass on the values and commitment we learned from him to those we work with and hopefully we will be able to do it with János’s humor and joy.


  1. 1.
    Menten KM, Wyrowski F (2011) In: Yamada KMT, Winnewisser G (eds) Interstellar molecules. Springer, Berlin, pp 27–42CrossRefGoogle Scholar
  2. 2.
    Petrie S, Bohme DK (2007) Mass Spectrom Rev 26:258–280PubMedCrossRefGoogle Scholar
  3. 3.
    Ohishi M (2016) J Phys Conf Ser 728:052002CrossRefGoogle Scholar
  4. 4.
    Larsson M, Geppert WD, Nyman G (2012) Rep Prog Phys 75:066901PubMedCrossRefGoogle Scholar
  5. 5.
    Rubin RH, Swenson GW Jr, Solomon RC, Flygare HL (1971) Astrophys J 169:L39–L44CrossRefGoogle Scholar
  6. 6.
    Turner BE, Liszt HS, Kaifu N, Kisliakov AG (1975) Astrophys J 201:L149–L152CrossRefGoogle Scholar
  7. 7.
    Hollis JM, Lovas FJ, Remijan AJ, Jewell PR, Ilyushin VV, Kleiner I (2006) Astrophys J 643:L25–L28CrossRefGoogle Scholar
  8. 8.
    Goesmann F, Rosenbauer H, Bredehöft JH, Cabane M, Ehrenfreund P, Gautier T, Giri C, Krüger H, Le Roy L, MacDermott AJ, McKenna-Lawlor S, Meierhenrich UJ, Muñoz Caro GM, Raulin F, Roll R, Steele A, Steininger H, Sternberg R, Szopa C, Thiemann W, Ulamec S (2015) Science 349:aab0689PubMedCrossRefGoogle Scholar
  9. 9.
    Remijan AJ, Hollis JM, Lovas FJ, Stork WD, Jewell PR, Meier PR (2008) Astrophys J 675:L85–L88CrossRefGoogle Scholar
  10. 10.
    Kaifu N, Morimoto M, Nagane K, Akabane K, Iguchi T, Takagi K (1974) Astrophys J 191:L135–L137CrossRefGoogle Scholar
  11. 11.
    Fourikis N, Takagi K, Morimoto M (1974) Astrophys J 191:L139–L141CrossRefGoogle Scholar
  12. 12.
    Belloche A, Menten KM, Comito C, Müller HSP, Schilke P, Ott J, Thorwirth S, Hieret C (2008) Astron Astrophys 482:179–196CrossRefGoogle Scholar
  13. 13.
    Belloche A, Meshcheryakov AA, Garrod RT, Ilyushin VV, Alekseev EA, Motiyenko RA, Margulès L, Müller HSP, Menten KM (2017) Astron Astrophys 601:A49CrossRefGoogle Scholar
  14. 14.
    Remijan AJ, Snyder LE, McGuire BA, Kuo H-L, Looney LW, Friedel DN, Golubiatnikov GY, Lovas FJ, Ilyushin VV, Alekseev EA, Dyubko SF, McCall BJ, Hollis JM (2014) Astrophys J 783:77CrossRefGoogle Scholar
  15. 15.
    McGuire BA, Burkhardt AM, Kalenski S, Shingledecker CN, Remijan AJ, Herbst E, McCarthy MC (2018) Science 359:202–205PubMedCrossRefGoogle Scholar
  16. 16.
    Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E (2012) Chem Soc Rev 41:5526–5565PubMedCrossRefGoogle Scholar
  17. 17.
    Saitta AM, Saija F (2014) Proc Natl Acad Sci USA 111:13768–13773CrossRefGoogle Scholar
  18. 18.
    Kaiser RI (2002) Chem Rev 102:1309–1358PubMedCrossRefGoogle Scholar
  19. 19.
    Geppert WD, Larsson M (2013) Chem Rev 113:8872–8905PubMedCrossRefGoogle Scholar
  20. 20.
    de Marcellus P, Meinert C, Myrgorodsk I, Nahon L, Buhse T, Le d’Hendecourt LS, Meierhenrich UJ (2015) Proc Natl Acad Sci USA 112:965–970PubMedCrossRefGoogle Scholar
  21. 21.
    Forstel M, Maksyutenko P, Jones BM, Sun B-J, Chang AHH, Kaiser RI (2016) Chem Commun 52:741–744CrossRefGoogle Scholar
  22. 22.
    Nuevo M, Milam SN, Sandford SA, Elsila JE, Dworkin JP (2009) Astrobiology 9:683–695PubMedCrossRefGoogle Scholar
  23. 23.
    Rodriguez-Lazcano Y, Maté B, Herrero VJ, Escribano R, Galvez O (2014) Phys Chem Chem Phys 16:3371–3380PubMedCrossRefGoogle Scholar
  24. 24.
    Herbst E (1982) Chem Phys 65:185–195CrossRefGoogle Scholar
  25. 25.
    Ferriere KM (2001) Rev Mod Phys 73:1031–1066CrossRefGoogle Scholar
  26. 26.
    Barone V, Latouche C, Skouteris D, Vazart F, Balucani N, Ceccarelli C, Lefloch B (2015) Mon Not R Astron Soc 453:L31CrossRefGoogle Scholar
  27. 27.
    Vazart F, Calderini D, Puzzarini C, Skouteris D, Barone V (2016) J Chem Theory Comput 12:5385–5397PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Skouteris D, Balucani N, Ceccarelli C, Vazart F, Puzzarini C, Barone V, Codella C, Lefloch B (2018) Astrophys J 854:135CrossRefGoogle Scholar
  29. 29.
    Redondo P, Barrientos C, Largo A (2014) Astrophys J 793:32CrossRefGoogle Scholar
  30. 30.
    Redondo P, Barrientos C, Largo A (2014) Astrophys J 780:181CrossRefGoogle Scholar
  31. 31.
    Barrientos C, Redondo P, Largo L, Rayon VM, Largo A (2012) Astrophys J 748:99CrossRefGoogle Scholar
  32. 32.
    Snow JL, Orlova G, Blagojevic V, Bohme DK (2007) J Am Chem Soc 129:9910–9917PubMedCrossRefGoogle Scholar
  33. 33.
    Siro Brigiano F, Jeanvoine Y, Largo A, Spezia R (2018) Astron Astrophys 610:A26CrossRefGoogle Scholar
  34. 34.
    Spezia R, Jeanvoine Y, Hase WL, Song K, Largo A (2016) Astrophys J 826:107CrossRefGoogle Scholar
  35. 35.
    Jeanvoine Y, Largo A, Hase WL, Spezia R (2018) J Phys Chem A 122:869–877PubMedCrossRefGoogle Scholar
  36. 36.
    Pulliam RL, McGuire BA, Remijan AJ (2012) Astrophys J 751:1CrossRefGoogle Scholar
  37. 37.
    Grimme S (2004) J Comput Chem 25:1463–1473PubMedCrossRefGoogle Scholar
  38. 38.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104PubMedCrossRefGoogle Scholar
  39. 39.
    Sato F, Hasegawa T, Whiteoak JB, Miyawaki R (2000) Astrophys J 535:857CrossRefGoogle Scholar
  40. 40.
    Dowell CD, Hildebrand RH, Schleuning DA, Vaillancourt JE, Dotson JL, Novak G, Renbarger T, Houde M (1998) Astrophys J 504:588CrossRefGoogle Scholar
  41. 41.
    Stewart JJP (2007) J Mol Model 13:1173–1213PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian09, Revision D.01. Gaussian Inc, WallingfordGoogle Scholar
  43. 43.
    Stewart JJP, Fiedler LJ, Zheng J, Rossi I, Hu W-P, Lynch GC, Liu Y-P, Zhang P, Chuang Y-Y, Pu J, Li J, Fast PL, Cramer CJ, Gao J, Truhlar DG, MOPAC version 5.022mn based on MOPAC 5.0 by James J. P. StewartGoogle Scholar
  44. 44.
    Song K, Spezia R (2018) Theoretical mass spectrometry. De Gruyter, BerlinCrossRefGoogle Scholar
  45. 45.
    Hase WL, Ludlow DM, Wolf RJ, Schlick T (1981) J Phys Chem 85:958–968CrossRefGoogle Scholar
  46. 46.
    Verlet L (1967) Phys Rev 159:98CrossRefGoogle Scholar
  47. 47.
    Hu X, Hase WL, Pirraglia T (1991) J Comput Chem 12:1014–1024CrossRefGoogle Scholar
  48. 48.
    Hase WL, Duchovic RJ, Hu X, Komornicki A, Lim KF, Lu D-H, Peslherbe GH, Swamy KN, Linde SRV, Varandas A et al (1996) QCPE Bull 16:671Google Scholar
  49. 49.
    Su T, Chesnavich WJ (1982) J Chem Phys 75:5183–5185CrossRefGoogle Scholar
  50. 50.
  51. 51.
    Baer T, Hase WL (1996) Unimolecular reaction dynamics: theory and experiments. Oxford University Press, New YorkGoogle Scholar
  52. 52.
    Beyer T, Swinehart DF (1973) Commun ACM 16:379CrossRefGoogle Scholar
  53. 53.
    Zhu L, Hase WL (1994) QCPE Bull 14:664Google Scholar
  54. 54.
    Pratihar S, Ma X, Homayoon Z, Barnes GL, Hase WL (2017) J Am Chem Soc 139:3570–3590PubMedCrossRefGoogle Scholar
  55. 55.
    Cao J, Voth GA (1994) J Chem Phys 100:5093CrossRefGoogle Scholar
  56. 56.
    Craig IR, Manolopoulos DE (2004) J Chem Phys 121:3368PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LAMBE, Univ Evry, CNRS, CEAUniversité Paris-SaclayEvryFrance
  2. 2.CNRS, Laboratoire de Chimie ThéoriqueSorbonne UniversitéParis Cedex 05France

Personalised recommendations