Advertisement

Unraveling the sequence of the electronic flow along the water-assisted ring-opening reaction in mutagen MX

  • Eduardo ChamorroEmail author
  • Elizabeth RincónEmail author
Regular Article
  • 40 Downloads
Part of the following topical collections:
  1. CHITEL 2017 - Paris - France

Abstract

The ring-opening reaction of 3-chloro-4-(dichloromethyl)-5-hydroxy-5H-furan-2-one (mutagen X or MX) remains an intriguing subject of both theoretical and experimental interest. This relies on the fact of uncertainty concerning which structure acts as the real mutagen. Challenging the current accepted idea of a direct tautomeric process transforming the furanone ring to the oxobutenoic acid chain structure, a water-assisted process via a six-membered transition structure (TS) is revealed to proceed with activation energy of 24.5 kcal/mol (i.e., 26.8 kcal/mol lower than the conventional tautomeric process). An analysis based on the application of catastrophe theory to the evolution of the electron localization function topology along the intrinsic reaction coordinate reveals that the process can be explained, using a Lewis-like chemical language, as a result of the electronic activation of the furanone specie by the water molecule: on the activation pathway (i.e., before TS is reached), the electronic perturbation introduced by the water reagent is first observed on the valence shell of the ring oxygen and then on that of the hydroxylic one. Thereafter, the release of the hydroxylic hydrogen and the breaking of the C–O bond in the furanone ring follow the electronic rearrangement. On the de-activation pathway, the water molecule first captures the hydroxylic proton. Then, a hydronium-like structure transfers a proton to the oxygen of the furanone moiety contributing to stabilize the open ring structure. The above description of such a favorable ring-opening process become thus associated with nine topological structural stability domains, featuring the following sequence of catastrophes: C5H3O3Cl3 + H2O: 10-CF[FU]UC[CC]CC-0: C5H3O3Cl3 + H2O.

Keywords

Bonding evolution theory (BET) Mutagen X MX Water-assisted ring opening Electron flow 

Notes

Acknowledgements

EC acknowledges the continuous support provided by Fondo Nacional de Ciencia y Tecnología (FONDECYT—Chile) through Projects Nos. 1140143 and 1181582.

References

  1. 1.
    Richardson SD (2003) Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends Anal Chem 22:666–684.  https://doi.org/10.1016/s0165-9936(03)01003-3 CrossRefGoogle Scholar
  2. 2.
    Woo YT, Lai D, McLain JL, Manibusan MK, Dellarco V (2002) Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products. Environ Health Perspect 110:75–87CrossRefGoogle Scholar
  3. 3.
    Komulainen H (2004) Experimental cancer studies of chlorinated by-products. Toxicology 198:239–248.  https://doi.org/10.1016/j.tox.2004.01.031 CrossRefPubMedGoogle Scholar
  4. 4.
    Rincon-Bedoya E, Velasquez N, Quijano J, Bravo-Linares C (2013) Mutagenicity and genotoxicity of water treated for human consumption induced by chlorination by-products. J Environ Health 75:28–36PubMedGoogle Scholar
  5. 5.
    Gomez-Bombarelli R, Calle E, Casado J (2012) DNA damage by genotoxic hydroxyhalofuranones: an in silico approach to MX. Environ Sci Technol 46:13463–13470.  https://doi.org/10.1021/es303105s CrossRefPubMedGoogle Scholar
  6. 6.
    Franzen R, Tanabe K, Morita M (1999) Ring-chain tautomerism of chlorinated hydroxyfuranones and reaction with nucleosides. Chemosphere 38:973–980.  https://doi.org/10.1016/s0045-6535(98)00358-0 CrossRefGoogle Scholar
  7. 7.
    Rincon E, Zuloaga F, Chamorro E (2013) Global and local chemical reactivities of mutagen X and simple derivatives. J Mol Model 19:2573–2582.  https://doi.org/10.1007/s00894-013-1799-7 CrossRefPubMedGoogle Scholar
  8. 8.
    Krokidis X, Noury S, Silvi B (1997) Characterization of elementary chemical processes by catastrophe theory. J Phys Chem A 101:7277–7282.  https://doi.org/10.1021/jp9711508 CrossRefGoogle Scholar
  9. 9.
    Berski S, Andres J, Silvi B, Domingo LR (2003) The joint use of catastrophe theory and electron localization function to characterize molecular mechanisms. A density functional study of the Diels–Alder reaction between ethylene and 1,3-butadiene. J Phys Chem A 107:6014–6024.  https://doi.org/10.1021/jp030272z CrossRefGoogle Scholar
  10. 10.
    Polo V, Andres J, Berskit S, Domingo LR, Silvi B (2008) Understanding reaction mechanisms in organic chemistry from catastrophe theory applied to the electron localization function topology. J Phys Chem A 112:7128–7136.  https://doi.org/10.1021/jp801429m CrossRefPubMedGoogle Scholar
  11. 11.
    Andres J, Gonzalez-Navarrete P, Sixte Safont V (2014) Unraveling reaction mechanisms by means of quantum chemical topology analysis. Int J Quantum Chem 114:1239–1252.  https://doi.org/10.1002/qua.24665 CrossRefGoogle Scholar
  12. 12.
    Andres J, Berski S, Domingo LR, Polo V, Silvi B (2011) Describing the molecular mechanism of organic reactions by using topological analysis of electronic localization function. Curr Org Chem 15:3566–3575CrossRefGoogle Scholar
  13. 13.
    Andres J, Gracia L, Gonzalez-Navarrete P, Safont VS (2015) Chemical structure and reactivity by means of quantum chemical topology analysis. Comput Theor Chem 1053:17–30.  https://doi.org/10.1016/j.comptc.2014.10.010 CrossRefGoogle Scholar
  14. 14.
    Berski S, Andres J, Silvi B, Domingo LR (2006) New findings on the Diels–Alder reactions. An analysis based on the bonding evolution theory. J Phys Chem A 110:13939–13947.  https://doi.org/10.1021/jp068071t CrossRefPubMedGoogle Scholar
  15. 15.
    Krokidis X, Vuilleumier R, Borgis D, Silvi B (1999) A topological analysis of the proton transfer in H5O2 +. Mol Phys 96:265–273.  https://doi.org/10.1080/002689799165891 CrossRefGoogle Scholar
  16. 16.
    Berski S, Ciunik LZ (2015) The mechanism of the formation of the hemiaminal and Schiff base from the benzaldehyde and triazole studied by means of the topological analysis of electron localisation function and catastrophe theory. Mol Phys 113:765–781.  https://doi.org/10.1080/00268976.2014.974702 CrossRefGoogle Scholar
  17. 17.
    Savin A, Silvi B, Colonna F (1996) Topological analysis of the electron localization function applied to delocalized bonds. Can J Chem Revue Canadienne De Chimie 74:1088–1096.  https://doi.org/10.1139/v96-122 CrossRefGoogle Scholar
  18. 18.
    Savin A, Nesper R, Wengert S, Fassler TF (1997) ELF: the electron localization function. Angew Chem Int Ed 36:1809–1832CrossRefGoogle Scholar
  19. 19.
    Savin A, Becke AD, Flad J, Nesper R, Preuss H, Vonschnering HG (1991) A new look at electron localization. Angew Chem Int Ed 30:409–412.  https://doi.org/10.1002/anie.199104091 CrossRefGoogle Scholar
  20. 20.
    Silvi B, Savin A (1994) Classification of chemical-bonds based on topological analysis of electron localization functions. Nature 371:683–686.  https://doi.org/10.1038/371683a0 CrossRefGoogle Scholar
  21. 21.
    Silvi B (2002) The synaptic order: a key concept to understand multicenter bonding. J Mol Struct 614:3–10.  https://doi.org/10.1016/s0022-2860(02)00231-4 CrossRefGoogle Scholar
  22. 22.
    Bader RFW (1994) Book atoms in molecules: a quantum theory. Clarendon Press, OxfordGoogle Scholar
  23. 23.
    Andres J, Berski S, Silvi B (2016) Curly arrows meet electron density transfers in chemical reaction mechanisms: from electron localization function (ELF) analysis to valence-shell electron-pair repulsion (VSEPR) inspired interpretation. Chem Commun 52:8183–8195.  https://doi.org/10.1039/c5cc09816e CrossRefGoogle Scholar
  24. 24.
    Domingo LR, Rios-Gutierrez M, Perez P, Chamorro E (2016) Understanding the 2n + 2n reaction mechanism between a carbenoid intermediate and CO2. Mol Phys 114:1374–1391.  https://doi.org/10.1080/00268976.2016.1142127 CrossRefGoogle Scholar
  25. 25.
    Lopez L, Ruiz P, Castro M, Quijano J, Duque-Norena M, Perez P, Chamorro E (2015) Understanding the thermal dehydrochlorination reaction of 1-chlorohexane. Revealing the driving bonding pattern at the planar catalytic reaction center. RSC Adv 5:62946–62956.  https://doi.org/10.1039/c5ra10152b CrossRefGoogle Scholar
  26. 26.
    Chamorro E, Ruiz P, Quijano J, Luna D, Restrepo L, Zuluaga S, Duque-Norena M (2014) Understanding the thermal 1s, 5s hydrogen shift isomerization of ocimene. J Mol Model.  https://doi.org/10.1007/s00894-014-2390-6 CrossRefPubMedGoogle Scholar
  27. 27.
    Chamorro E (2003) The nature of bonding in pericyclic and pseudopericyclic transition states: thermal chelotropic decarbonylations. J Chem Phys 118:8687–8698.  https://doi.org/10.1063/1.1566740 CrossRefGoogle Scholar
  28. 28.
    Chamorro E, Fuentealba P, Savin A (2003) Electron probability distribution in AIM and ELF basins. J Comput Chem 24:496–504.  https://doi.org/10.1002/jcc.10242 CrossRefPubMedGoogle Scholar
  29. 29.
    Domingo LR, Chamorro E, Perez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Org Chem 73:4615–4624.  https://doi.org/10.1021/jo800572a CrossRefPubMedGoogle Scholar
  30. 30.
    Chamorro E, Notario R, Santos JC, Perez P (2007) A theoretical scale for pericyclic and pseudopericyclic reactions. Chem Phys Lett 443:136–140.  https://doi.org/10.1016/j.cplett.2007.06.025 CrossRefGoogle Scholar
  31. 31.
    Domingo LR, Chamorro E, Perez P (2010) Understanding the mechanism of non-polar Diels–Alder reactions. A comparative ELF analysis of concerted and stepwise diradical mechanisms. Org Biomol Chem 8:5495–5504.  https://doi.org/10.1039/c0ob00563k CrossRefPubMedGoogle Scholar
  32. 32.
    Domingo LR, Chamorro E, Perez P (2010) Understanding the high reactivity of the azomethine ylides in 3 + 2 cycloaddition reactions. Lett Org Chem 7:432–439CrossRefGoogle Scholar
  33. 33.
    Domingo LR, Chamorro E, Perez P (2008) An understanding of the electrophilic/nucleophilic behavior of electro-deficient 2,3-disubstituted 1,3-butadienes in polar Diels–Alder reactions. A density functional theory study. J Phys Chem A 112:4046–4053.  https://doi.org/10.1021/jp711704m CrossRefPubMedGoogle Scholar
  34. 34.
    Andres J, Gonzalez-Navarrete P, Safont VS, Silvi B (2017) Curly arrows, electron flow, and reaction mechanisms from the perspective of the bonding evolution theory. Phys Chem Chem Phys 19:29031–29046.  https://doi.org/10.1039/c7cp06108k CrossRefPubMedGoogle Scholar
  35. 35.
    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403.  https://doi.org/10.1063/1.458517 CrossRefGoogle Scholar
  36. 36.
    Hratchian HP, Schlegel HB (2005) Chapter 10. Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In: Dykstra CE, Frenking G, Kim KS, Scuseria G (eds) Theory and applications of computational chemistry: the first 40 years. Elsevier, AmsterdamGoogle Scholar
  37. 37.
    Fukui K (1981) The path of chemical-reactions—the IRC approach. Acc Chem Res 14:363–368.  https://doi.org/10.1021/ar00072a001 CrossRefGoogle Scholar
  38. 38.
    Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789.  https://doi.org/10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  39. 39.
    Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652.  https://doi.org/10.1063/1.464913 CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision B.01. Gaussian, Inc. Wallingford CTGoogle Scholar
  41. 41.
    Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167.  https://doi.org/10.1021/ar700111a CrossRefPubMedGoogle Scholar
  42. 42.
    Schlegel HB (1995) Geometry optimization on potential energy surfaces. In: Ryarkony DR (ed) Modern electronic structure theory, vol 2. World Scientific Publishing, SingaporeCrossRefGoogle Scholar
  43. 43.
    Gonzalez C, Schlegel HB (1991) Improved algorithms for reaction-path following—higher-order implicit algorithms. J Chem Phys 95:5853–5860.  https://doi.org/10.1063/1.461606 CrossRefGoogle Scholar
  44. 44.
    Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23:597–604.  https://doi.org/10.1016/s0097-8485(99)00039-x CrossRefGoogle Scholar
  45. 45.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592.  https://doi.org/10.1002/jcc.22885 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ciencias Químicas, Facultad de Ciencias ExactasUniversidad Andres BelloSantiagoChile
  2. 2.Facultad de Ciencias, Instituto de Ciencias QuímicasUniversidad Austral de ChileValdiviaChile

Personalised recommendations