Complexes of 1-[3-geranyl-2,4,6-trihydroxyphenyl]-2-methylpropan-1-one with a Cu2+ ion: a DFT study

  • Liliana MamminoEmail author
Regular Article
Part of the following topical collections:
  1. CHITEL 2017 - Paris - France


1-[3-geranyl-2,4,6-trihydroxyphenyl]-2-methylpropan-1-one (GTM) is an acylphloroglucinol present in various plants. Its structure is largely close to that of hyperjovinol A (HPJA)—a compound with proven good antioxidant activity. Complexes of the GTM molecule with a Cu2+ ion were calculated considering all the sites to which the Cu2+ ion may bind (the four O atoms in the acylphloroglucinol moiety and the two C=C π bonds in the geranyl chain) and including also simultaneous coordination to two or three sites, when geometrically possible. Calculations were performed at the DFT level with the B3LYP functional, the 6-31+G(d,p) basis set for the C, O and H atoms and the LANL2DZ pseudopotential for the Cu2+ ion. The results show that Cu2+ is effectively reduced to Cu+ in all the calculated complexes. Comparisons with analogous complexes of related molecular structures are utilised to evaluate the influence of specific structural features on the molecule’s complexation and reducing ability. Comparisons with the complexes of a structure in which the first π bond in the geranyl chain is removed (GTM-P2) enable an evaluation of the relevance of this π bond. Comparisons with the complexes of a structure in which the geranyl chain is replaced by a prenyl chain (GTM-PR) enable an evaluation of the relevance of the second π bond in the geranyl chain. Comparisons with the complexes of HPJA enable an evaluation of the relative effects of an OH group or a π bond on the molecule’s reducing ability. The energy lowering on complexation is greatest for HPJA, nearly comparable for GTM and GTM-P2 and smallest for GTM-PR.


Acylphloroglucinols Antioxidants Complexes of organic molecules with metal ions Geranylated acylphloroglucinols Intramolecular hydrogen bonding Molecule–ion interaction 

Supplementary material

214_2018_2381_MOESM1_ESM.pdf (14.6 mb)
Supplementary material 1 (PDF 14910 kb)
214_2018_2381_MOESM2_ESM.pdf (1.7 mb)
Supplementary material 2 (PDF 1726 kb)


  1. 1.
    Singh IP, Bharate SB (2006) Nat Prod Rep 23:558CrossRefGoogle Scholar
  2. 2.
    Bohlmann F, Abraham WR, Robinson H, King RM (1980) Phytochem 19:2475CrossRefGoogle Scholar
  3. 3.
    Gamiotea-Turro D, Cuesta-Rubio O, Prieto-Gonzalez S, Simone FD, Passi S, Rastrelli L (2004) J Nat Prod 67:869PubMedCrossRefGoogle Scholar
  4. 4.
    Bohlmann F, Zdero C (1979) Phytochem 18:641CrossRefGoogle Scholar
  5. 5.
    Mammino L, Kabanda MM (2009) J Mol Struct (Theochem) 901:210–219CrossRefGoogle Scholar
  6. 6.
    Kabanda MM, Mammino L (2012) Int J Quantum Chem 112:3691CrossRefGoogle Scholar
  7. 7.
    Mammino L (2013) J Mol Model 19:2127PubMedCrossRefGoogle Scholar
  8. 8.
    Mammino L, Kabanda MM (2013) Mol Simul 39(1):1–13CrossRefGoogle Scholar
  9. 9.
    Verotta L (2003) Phytochem Rev 1:389CrossRefGoogle Scholar
  10. 10.
    Delgado Alfaro RA, Gomez-Sandoval Z, Mammino L (2014) J Mol Model 20:2337. CrossRefGoogle Scholar
  11. 11.
  12. 12.
  13. 13.
    Mammino L (2018) In: Wang Yan A et al (eds) Concepts, methods and applications of quantum systems in chemistry and physics. Progress in theoretical chemistry and physics, vol 31. Springer, Berlin, pp 281–304Google Scholar
  14. 14.
    Leopoldini M, Prieto Pitarch I, Russo N, Toscano M (2004) J Phys Chem A 108:92CrossRefGoogle Scholar
  15. 15.
    Leopoldini M, Marino T, Russo N, Toscano M (2004) Theor Chem Acc 111:210CrossRefGoogle Scholar
  16. 16.
    Athanasas K, Magiatis P, Fokialakis N, Skaltsounis AL, Pratsinis H, Kletsas D (2004) J Nat Prod 67:973PubMedCrossRefGoogle Scholar
  17. 17.
    Alagona G, Ghio C (2009) Phys Chem Chem Phys 11:776PubMedCrossRefGoogle Scholar
  18. 18.
    Alagona G, Ghio C (2009) J Phys Chem A 113:15206PubMedCrossRefGoogle Scholar
  19. 19.
    Chiodo SG, Leopoldini M, Russo N, Toscano M (2010) Phys Chem Chem Phys 12:7662PubMedCrossRefGoogle Scholar
  20. 20.
    Reed AE, Weinhold F (1983) J Chem Phys 78(6):4066CrossRefGoogle Scholar
  21. 21.
    Reed AE, Weinhold F (1985) J Chem Phys 83(4):1736CrossRefGoogle Scholar
  22. 22.
    Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83(2):735CrossRefGoogle Scholar
  23. 23.
    Carpenter JE, Weinhold F (1988) J Mol Struct (Theochem) 169:41CrossRefGoogle Scholar
  24. 24.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88(6):899CrossRefGoogle Scholar
  25. 25.
    Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683PubMedCrossRefGoogle Scholar
  26. 26.
    Rouvray DH (1997) In: Rouvray DH (ed) Fuzzy logic in chemistry. Academic Press, Cambridge, pp 1–29Google Scholar
  27. 27.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li MX, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill W, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, version D01. Gaussian, Inc., WallingfordGoogle Scholar
  28. 28.
    Dennington R, Keith T, Millam J (2007) GaussView 4.1. Semichem, Inc., Shawnee MissionGoogle Scholar
  29. 29.
    Chem3D, ultra version 8.0.3., Cambridge soft (2003)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of VendaThohoyandouSouth Africa

Personalised recommendations