Theoretical Chemistry Accounts

, 137:162 | Cite as

Quantum chemical calculations support pseudouridine synthase reaction through a glycal intermediate and provide details of the mechanism

  • Dóra J. Kiss
  • Julianna Oláh
  • Gergely Tóth
  • Dóra K. Menyhárd
  • György G. FerenczyEmail author
Regular Article
Part of the following topical collections:
  1. In Memoriam of János Ángyán


Pseudouridylation affects almost all types of RNAs and the malfunction of pseudouridine synthases, the enzymes responsible for the uridine–pseudouridine transformation, is linked to severe diseases, like cancer and X-linked dyskeratosis congenita. Stand-alone and guide-dependent pseudouridine synthases share a common active site structure and are assumed to share the catalytic mechanism whose details are not yet elucidated. We performed quantum chemical calculations on model systems to investigate the initial steps of several pathways proposed in the literature or based on biochemical analogy and chemical intuition. Results suggest that the Michael addition scheme is unlikely since no stable adduct is formed between the C6-atom of the uridine and the catalytic aspartate. The nucleophilic substitution scheme is ruled out owing to the unfavorable steric arrangement of the reactants. Our results are in favor of the glycal scheme and provide details for the mechanism that is likely to start with the glycosidic bond cleavage between the ribose and uracil, followed by or coupled to the deprotonation of the C2′-atom of the sugar by the conserved catalytic aspartate. A possible role of the latter step is suggested to be the regulation of the intermediate reactivity: C2′ deprotonation leads to a low-energy intermediate with sufficient lifetime to allow base repositioning before reattachment to ribose by C–C bond formation.


Pseudouridine synthase Reaction mechanism Glycal intermediate DFT 



This work was supported by the Hungarian Scientific Research Fund (OTKA) through Grants K111862 and K116305 and by the MedInProt Protein Science Research Synergy Program. J.O. was supported by the Bolyai János Research Scholarship and by NKFIH Grant No. 115503. Part of the computations were performed using the supercomputing service offered by the Hungarian National Information Infrastructure Development Institute. This work is dedicated to the memory of Professor János G. Ángyán.

Supplementary material

214_2018_2361_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1293 kb)


  1. 1.
    Machnicka MA et al (2013) MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res 41:262–267CrossRefGoogle Scholar
  2. 2.
    Kellner S et al (2014) Profiling of RNA modifications by multiplexed stable isotope labelling. Chem Commun 50:3516–3518CrossRefGoogle Scholar
  3. 3.
    Davis F, Allen FW (1957) Ribonucleic acids from yeast which contain a fifth nucleotide. J Biol Chem 227:907–915PubMedGoogle Scholar
  4. 4.
    Cohn WE (1959) 5-Ribosyl uracil, a carbon–carbon ribofuranosyl nucleoside in ribonucleic acids. Biochim Biophys Acta 32:569–571CrossRefGoogle Scholar
  5. 5.
    Ge J, Yu Y (2013) RNA pseudouridylation: new insights into an old modification. Trends Biochem Sci 38:210–218CrossRefGoogle Scholar
  6. 6.
    Liang X-H, Liu Q, Fournier MJ (2009) Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA 15:1716–1728CrossRefGoogle Scholar
  7. 7.
    Rintala-Dempsey AC, Kothe U (2017) Eukaryotic stand-alone pseudouridine synthases—RNA modifying enzymes and emerging regulators of gene expression? RNA Biol 14:1185–1196CrossRefGoogle Scholar
  8. 8.
    Ferré-D’Amaré AR (2003) RNA-modifying enzymes. Curr Opin Struct Biol 13:49–55CrossRefGoogle Scholar
  9. 9.
    Boschi-Muller S, Motorin Y (2013) Chemistry enters nucleic acids biology: enzymatic mechanisms of RNA modification. Biochemistry (Mosc) 78:1392–1404CrossRefGoogle Scholar
  10. 10.
    Yu Y, Meier UT (2014) RNA-guided isomerization of uridine to pseudouridine—pseudouridylation. RNA Biol 11:1483–1494CrossRefGoogle Scholar
  11. 11.
    Baker DL et al (2005) RNA-guided RNA modification: functional organization of the archaeal H/ACA RNP. Genes Dev 19:1238–1248CrossRefGoogle Scholar
  12. 12.
    Charpentier B, Muller SB, Branlant C (2005) Reconstitution of archaeal H/ACA small ribonucleoprotein complexes active in pseudouridylation. Nucleic Acids Res 33:3133–3144CrossRefGoogle Scholar
  13. 13.
    Heiss NS et al (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 19:32–38CrossRefGoogle Scholar
  14. 14.
    Kirwan M, Dokal I (2009) Dyskeratosis congenita, stem cells and telomeres. Biochim Biophys Acta 1792:371–379CrossRefGoogle Scholar
  15. 15.
    Bykhovskaya Y, Casas K, Mengesha E, Inbal A, Fischel-Ghodsian N (2004) Report missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet 74:1303–1308CrossRefGoogle Scholar
  16. 16.
    Penzo M, Guerrieri AN, Zacchini F, Treré D, Montanaro L (2017) RNA pseudouridylation in physiology and medicine: for better and for worse. Genes (Basel) 8:301CrossRefGoogle Scholar
  17. 17.
    Kierzek E et al (2014) The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res 42:3492–3501CrossRefGoogle Scholar
  18. 18.
    Meroueh M et al (2000) Unique structural and stabilizing roles for the individual pseudouridine residues in the 1920 region of Escherichia coli 23S rRNA. Nucleic Acids Res 28:2075–2083CrossRefGoogle Scholar
  19. 19.
    Charette M, Gray MW (2000) Pseudouridine in RNA: what, where, how, and why. IUBMB Life 49:341–351CrossRefGoogle Scholar
  20. 20.
    Hamma T, Ferré-D’Amaré AR (2006) Pseudouridine synthases. Chem Biol 13:1125–1135CrossRefGoogle Scholar
  21. 21.
    Liang B, Li H (2011) Structures of ribonucleoprotein particle modification enzymes. Q Rev Biophys 44:95–122CrossRefGoogle Scholar
  22. 22.
    Majumder M, Bosmeny MS, Gupta R (2016) Structure–function relationships of archaeal Cbf5 during in vivo RNA-guided pseudouridylation. RNA 22:1604–1619CrossRefGoogle Scholar
  23. 23.
    Spenkuch F, Motorin Y, Helm M (2014) Pseudouridine: still mysterious, but never a fake (uridine)! RNA Biol 11:1540–1554CrossRefGoogle Scholar
  24. 24.
    Spenkuch F (2013) Open questions how do pseudouridine synthases work? JUnQ Open Quest 3:16–20Google Scholar
  25. 25.
    Gu X, Liu Y, Santi DV (1999) The mechanism of pseudouridine synthase I as deduced from its interaction with 5-fluorouracil-tRNA. PNAS 96:14270–14275CrossRefGoogle Scholar
  26. 26.
    Friedt J, Leavens FMV, Mercier E, Wieden H, Kothe U (2014) An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation. Nucleic Acids Res 42:3857–3870CrossRefGoogle Scholar
  27. 27.
    Huang L, Pookanjanatavip M, Gu X, Santi DV (1998) A conserved aspartate of tRNA pseudouridine synthase is essential for activity and a probable nucleophilic catalyst. Biochemistry 2960:344–351CrossRefGoogle Scholar
  28. 28.
    Meier UT (2005) The many facets of H/ACA ribonucleoproteins. Chromosoma 114:1–14CrossRefGoogle Scholar
  29. 29.
    Miracco EJ, Mueller EG (2011) The products of 5-fluorouridine by the action of the pseudouridine synthase TruB disfavor one mechanism and suggest another. J Am Chem Soc 133:11826–11829CrossRefGoogle Scholar
  30. 30.
    Spenkuch F et al (2014) Dye label interference with RNA modification reveals 5-fluorouridine as non-covalent inhibitor. Nucleic Acids Res 42:12735–12745CrossRefGoogle Scholar
  31. 31.
    Spedaliere CJ, Mueller EG (2004) Not all pseudouridine synthases are potently inhibited by RNA containing 5-fluorouridine. RNA 10:192–199CrossRefGoogle Scholar
  32. 32.
    Zhou J, Liang B, Li H (2010) Functional and structural impact of target uridine substitutions on the H/ACA ribonucleoprotein particle pseudouridine synthase. Biochemistry 49:6276–6281CrossRefGoogle Scholar
  33. 33.
    Zhou J et al (2010) Glycosidic bond conformation preference plays a pivotal role in catalysis of RNA pseudouridylation: a combined simulation and structural study. J Mol Biol 401:690–695CrossRefGoogle Scholar
  34. 34.
    Czudnochowski N et al (2014) The mechanism of pseudouridine synthases from a covalent complex with RNA, and alternate specificity for U2605 versus U2604 between close homologs. Nucleic Acids Res 42:2037–2048CrossRefGoogle Scholar
  35. 35.
    Spedaliere CJ, Ginter JM, Johnston MV, Mueller EG (2004) The pseudouridine synthases: revisiting a mechanism that seemed settled. J Am Chem Soc 126:12758–12759CrossRefGoogle Scholar
  36. 36.
    McDonald MK, Miracco EJ, Chen J, Xie Y, Mueller EG (2011) The handling of the mechanistic probe 5-fluorouridine by the pseudouridine synthase TruA and its consistency with the handling of the same probe by the pseudouridine synthases TruB and RluA. Biochemistry 50:426–436CrossRefGoogle Scholar
  37. 37.
    Veerareddygari GR, Singh SK, Mueller EG (2016) The pseudouridine synthases proceed through a glycal intermediate. J Am Chem Soc 138:7852–7855CrossRefGoogle Scholar
  38. 38.
    Lee T, Kollman PA (1999) Quantum mechanical calculations of nucleophilic attack in the pseudouridine synthesis reaction. J Am Chem Soc 121:9928–9931CrossRefGoogle Scholar
  39. 39.
    Liang B et al (2009) Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA. Nat Struct Mol Biol 16:740–746CrossRefGoogle Scholar
  40. 40.
    Duan J, Li L, Lu J, Wang W, Ye K (2009) Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase. Mol Cell 34:427–439CrossRefGoogle Scholar
  41. 41.
    Pronk S et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854CrossRefGoogle Scholar
  42. 42.
    Aliev AE et al (2014) Motional timescale predictions by molecular dynamics simulations: case study using proline and hydroxyproline sidechain dynamics. Proteins 82:195–215CrossRefGoogle Scholar
  43. 43.
    Steinbrecher T, Latzer J, Case DA (2012) Revised AMBER parameters for bioorganic phosphates. J Chem Theory Comput 8:4405–4412CrossRefGoogle Scholar
  44. 44.
    Bergonzo C, Cheatham TE (2015) Improved force field parameters lead to a better description of RNA structure. J Chem Theory Comput 11:3969–3972CrossRefGoogle Scholar
  45. 45.
    Vangaveti S, Ranganathan SV, Chen AA (2017) Advances in RNA molecular dynamics: a simulator’s guide to RNA force fields. Wiley Interdiscip Rev RNA 8:e1396CrossRefGoogle Scholar
  46. 46.
    Tan D, Piana S, Dirks RM, Shaw DE (2018) RNA force field with accuracy comparable to state-of-the-art protein force fields. PNAS 115:E1346–E1355CrossRefGoogle Scholar
  47. 47.
    Izadi S, Anandakrishnan R, Onufriev AV (2014) Building water models: a different approach. J Phys Chem Lett 5:3863–3871CrossRefGoogle Scholar
  48. 48.
    Becke A (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  49. 49.
    Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  50. 50.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104CrossRefGoogle Scholar
  51. 51.
    Bochevarov AD et al (2013) Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem 113:2110–2142CrossRefGoogle Scholar
  52. 52.
    Toulouse J, Zhu W, Savin A, Jansen G, Ángyán JG (2011) Closed-shell ring coupled cluster doubles theory with range separation applied on weak intermolecular interactions. J Chem Phys 135:084119CrossRefGoogle Scholar
  53. 53.
    Heßelmann A (2012) Random-phase-approximation correlation method including exchange interactions. Phys Rev A 85:012517CrossRefGoogle Scholar
  54. 54.
    Kállay M (2015) Linear-scaling implementation of the direct random-phase approximation. J Chem Phys 142:204105CrossRefGoogle Scholar
  55. 55.
    MRCC, a quantum chemical program suite written by M. Kállay, Z. Rolik, J. Csontos, P. Nagy, G. Samu, D. Mester, J. Csóka, B. Szabó, I. Ladjánszki, L. Szegedy, B. Ladóczki, K. Petrov, M. Farkas, P. D. Mezei, and B. Hégely. See also Z. Rolik, L. Szegedy, I. Ladjánszki, B. Ladóczki, and M. Kállay, J Chem Phys 139:094105 (2013).
  56. 56.
    Jacobs AL, Schär P (2012) DNA glycosylases: in DNA repair and beyond. Chromosoma 121:1–20CrossRefGoogle Scholar
  57. 57.
    Dinner AR, Blackburn GM, Karplus M (2001) Uracil-DNA glycosylase acts by substrate autocatalysis. Nature 413:752–755CrossRefGoogle Scholar
  58. 58.
    Cavallo L, Kleinjung J, Fraternali F (2003) POPS: a fast algorithm for solvent accessible surface areas at atomic and residue level. Nucleic Acid Res 31:3364–3366CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dóra J. Kiss
    • 1
    • 2
  • Julianna Oláh
    • 3
  • Gergely Tóth
    • 1
  • Dóra K. Menyhárd
    • 4
  • György G. Ferenczy
    • 2
    Email author
  1. 1.Institute of ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.Medicinal Chemistry Research Group, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
  3. 3.Department of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsBudapestHungary
  4. 4.MTA-ELTE Protein Modelling Research Group, Institute of ChemistryEötvös Loránd UniversityBudapestHungary

Personalised recommendations