Advertisement

Constructing soft-conjugated materials from small molecules to polymers: a theoretical study

  • Yuanyuan Qi
  • Zhicai Chen
  • Runfeng Chen
  • Lu Jin
  • Mingguang Li
  • Yuanfang Cheng
  • Chao Zheng
  • Wei Huang
Regular Article
  • 26 Downloads

Abstract

Construction of organic materials with harmonized optoelectronic properties and processabilities is important for the practical applications, especially for the solution-processed devices. Herein, three series of soft-conjugated materials designed with rigid planar molecular structures in solid state for promising optoelectronic properties and flexible non-planar conformation in solution for facile processing were constructed and theoretically investigated using thiophene and/or furan aromatic rings as the backbone and 10 pairs of non-bonding interactions as the soft bonding to conformationally lock the molecules. Computational results indicate that soft-conjugated small molecules and polymers can be efficiently established on 5–5 aromatic ring architectures with various non-bonding interaction pairs, and furan is more efficient than thiophene in constructing soft-conjugated materials due to the strong conjugation effects and low rotation hindrance between the adjacent furan-based rings. High optical and electronic properties of the soft-conjugated materials can be also achieved, showing delocalized frontier molecular orbitals with favorable energy levels for conventional device applications, strong absorption and emission bands that are comparable to the corresponding rigid-conjugated materials. These findings highlight that soft-conjugation feature would be inspirational for the development of organic electronics to overcome the intrinsic contradiction between high optoelectronic properties and good processability in organic π-conjugated small molecules and polymers.

Keywords

Intramolecular interactions Optoelectronic property Density functional theory calculations Soft-conjugated materials Soft-conjugation 

Notes

Acknowledgements

This study was supported in part by the National Natural Science Foundation of China (21304049, 21674049, 21274065, 21601091, 61136003 and 61704089), Qing Lan project of Jiangsu Province, Science Fund for Distinguished Young Scholars of Jiangsu Province of China (BK20150041), the Natural Science Fund for Colleges and Universities in Jiangsu Province (17KJD15006), Jiangsu postdoctoral fund project (1601066C) and 1311 Talents Program of Nanjing University of Posts and Telecommunications (Dingshan).

Supplementary material

214_2018_2343_MOESM1_ESM.docx (347 kb)
Supplementary material 1 (DOCX 347 kb)

References

  1. 1.
    Im Y, Byun SY, Kim JH, Lee DR, Oh CS, Yook KS, Lee JY (2017) Recent progress in high-efficiency blue-light-emitting materials for organic light-emitting diodes. Adv Funct Mater 27(13):1603007–1603030CrossRefGoogle Scholar
  2. 2.
    Tao Y, Xu L, Zhang Z, Chen R, Li H, Xu H, Zheng C, Huang W (2016) Achieving optimal self-adaptivity for dynamic tuning of organic semiconductors through resonance engineering. J Am Chem Soc 138(30):9655–9662CrossRefGoogle Scholar
  3. 3.
    Quinn JTE, Zhu J, Li X, Wang J, Li Y (2017) Recent progress in the development of n-type organic semiconductors for organic field effect transistors. J Mater Chem C 5(34):8654–8681CrossRefGoogle Scholar
  4. 4.
    Nikolka M, Nasrallah I, Rose B, Ravva MK, Broch K, Sadhanala A, Harkin D, Charmet J, Hurhangee M, Brown A, Illig S, Too P, Jongman J, McCulloch I, Bredas J-L, Sirringhaus H (2017) High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat Mater 16(3):356–362CrossRefGoogle Scholar
  5. 5.
    Cao W, Xue J (2014) Recent progress in organic photovoltaics: device architecture and optical design. Energy Environ Sci 7(7):2123–2144CrossRefGoogle Scholar
  6. 6.
    Chen R, Zheng C, Li C, Li H, Wang Z, Tang Y, Jiang H, Tan Z, Huang W (2016) Efficient synthesis and photovoltaic properties of highly rigid perylene-embedded benzothiazolyls. Polym Chem 7(4):780–784CrossRefGoogle Scholar
  7. 7.
    Wang F, Wang Z, Jiang C, Yin L, Cheng R, Zhan X, Xu K, Wang F, Zhang Y, He J (2017) Progress on electronic and optoelectronic devices of 2D layered semiconducting materials. Small 13(35):1604298CrossRefGoogle Scholar
  8. 8.
    Li H, Wang Z, Song C, Wang Y, Lin Z, Xiao J, Chen R, Zheng C, Huang W (2014) Manipulating charge transport in a π-stacked polymer through silicon incorporation. J Mater Chem C 2(34):6946–6953CrossRefGoogle Scholar
  9. 9.
    Zhen X, Tao Y, An Z, Chen P, Xu C, Chen R, Huang W, Pu K (2017) Ultralong phosphorescence of water-soluble organic nanoparticles for in vivo afterglow imaging. Adv Mater 29(33):1606665–1606671CrossRefGoogle Scholar
  10. 10.
    Beno BR, Yeung K-S, Bartberger MD, Pennington LD, Meanwell NA (2015) A survey of the role of noncovalent sulfur interactions in drug design. J Med Chem 58(11):4383–4438CrossRefGoogle Scholar
  11. 11.
    Tsujimoto H, Ha D-G, Markopoulos G, Chae HS, Baldo MA, Swager TM (2017) Thermally activated delayed fluorescence and aggregation induced emission with through-space charge transfer. J Am Chem Soc 139(13):4894–4900CrossRefGoogle Scholar
  12. 12.
    An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W (2015) Stabilizing triplet excited states for ultralong organic phosphorescence. Nat Mater 14(7):685–690CrossRefGoogle Scholar
  13. 13.
    Hu K, Blair AD, Piechota EJ, Schauer PA, Sampaio RN, Parlane FG, Meyer GJ, Berlinguette CP (2016) Kinetic pathway for interfacial electron transfer from a semiconductor to a molecule. Nat chem 8(9):853–859CrossRefGoogle Scholar
  14. 14.
    Raos G, Famulari A, Meille SV, Gallazzi MC, Allegra G (2004) Interplay of conformational states and nonbonded interactions in substituted bithiophenes. J Phys Chem A 108(4):691–698CrossRefGoogle Scholar
  15. 15.
    Coughlin JE, Zhugayevych A, Bakus RC, van der Poll TS, Welch GC, Teat SJ, Bazan GC, Tretiak S (2014) A combined experimental and theoretical study of conformational preferences of molecular semiconductors. J Phys Chem C 118(29):15610–15623CrossRefGoogle Scholar
  16. 16.
    Ashton PR, Ballardini R, Balzani V, Boyd SE, Credi A, Gandolfi MT, Gómez-López M, Iqbal S, Philp D, Preece JA, Prodi L, Ricketts HG, Stoddart JF, Tolley MS, Venturi M, White AJP, Williams DJ (1997) Simple mechanical molecular and supramolecular machines: photochemical and electrochemical control of switching processes. Chem Eur J 3(1):152–170CrossRefGoogle Scholar
  17. 17.
    Bunz UH (2010) α-Oligofurans: molecules without a twist. Angew Chem Int Ed 49(30):5037–5040CrossRefGoogle Scholar
  18. 18.
    Cheng Y, Qi Y, Tang Y, Zheng C, Wan Y, Huang W, Chen R (2016) Controlling intramolecular conformation through nonbonding interaction for soft-conjugated materials: molecular design and optoelectronic properties. J Phys Chem Lett 7(18):3609–3615CrossRefGoogle Scholar
  19. 19.
    Huang H, Chen Z, Ortiz RP, Newman C, Usta H, Lou S, Youn J, Noh Y-Y, Baeg K-J, Chen LX, Facchetti A, Marks T (2012) Combining electron-neutral building blocks with intramolecular “conformational locks” affords stable, high-mobility P- and N-channel polymer semiconductors. J Am Chem Soc 134(26):10966–10973CrossRefGoogle Scholar
  20. 20.
    Jackson NE, Savoie BM, Kohlstedt KL, Olvera de la Cruz M, Schatz GC, Chen LX, Ratner MA (2013) Controlling conformations of conjugated polymers and small molecules: the role of nonbonding interactions. J Am Chem Soc 135(28):10475–10483CrossRefGoogle Scholar
  21. 21.
    Huang H, Yang L, Facchetti A, Marks TJ (2017) Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem Rev 117(15):10291–10318CrossRefGoogle Scholar
  22. 22.
    Zhang S, Qin Y, Uddin MA, Jang B, Zhao W, Liu D, Woo HY, Hou J (2016) A fluorinated polythiophene derivative with stabilized backbone conformation for highly efficient fullerene and non-fullerene polymer solar cells. Macromolecules 49(8):2993–3000CrossRefGoogle Scholar
  23. 23.
    Zhang Q, Yan L, Jiao X, Peng Z, Liu S, Rech JJ, Klump E, Ade H, So F, You W (2017) Fluorinated thiophene units improve photovoltaic device performance of donor–acceptor copolymers. Chem Mater 29(14):5990–6002CrossRefGoogle Scholar
  24. 24.
    Li Z, Lin H, Jiang K, Carpenter J, Li Y, Liu Y, Hu H, Zhao J, Ma W, Ade H (2015) Dramatic performance enhancement for large bandgap thick-film polymer solar cells introduced by a difluorinated donor unit. Nano Energy 15:607–615CrossRefGoogle Scholar
  25. 25.
    Yum S, An TK, Wang X, Lee W, Uddin MA, Kim YJ, Nguyen TL, Xu S, Hwang S, Park CE (2014) Benzotriazole-containing planar conjugated polymers with noncovalent conformational locks for thermally stable and efficient polymer field-effect transistors. Chem Mater 26(6):2147–2154CrossRefGoogle Scholar
  26. 26.
    Turkoglu G, Cinar ME, Ozturk T (2017) Thiophene-based organic semiconductors. Top Curr Chem 375(6):84–128CrossRefGoogle Scholar
  27. 27.
    Xia B, Lu K, Yuan L, Zhang J, Zhu L, Zhu X, Deng D, Li H, Wei Z (2016) A conformational locking strategy in linked-acceptor type polymers for organic solar cells. Polym Chem 7(6):1323–1329CrossRefGoogle Scholar
  28. 28.
    Yu S, Chen Y, Yang L, Ye P, Wu J, Yu J, Zhang S, Gao Y, Huang H (2017) Significant enhancement of photovoltaic performance through introducing S···N Conformational locks. J Mater Chem A 5:21674–21678CrossRefGoogle Scholar
  29. 29.
    Tsuji H, Nakamura E (2017) Design and functions of semiconducting fused polycyclic furans for optoelectronic applications. Acc Chem Res 50(2):396–406CrossRefGoogle Scholar
  30. 30.
    Gidron O, Diskin-Posner Y, Bendikov M (2010) α-Oligofurans. J Am Chem Soc 132(7):2148–2150CrossRefGoogle Scholar
  31. 31.
    Zhao Z, Nie H, Ge C, Cai Y, Xiong Y, Qi J, Wu W, Kwok RT, Gao X, Qin A (2017) Furan is superior to thiophene: a furan-cored AIEgen with remarkable chromism and OLED performance. Adv Sci 4(8):1700005–1700012CrossRefGoogle Scholar
  32. 32.
    Chen MS, Lee OP, Niskala JR, Yiu AT, Tassone CJ, Schmidt K, Beaujuge PM, Onishi SS, Toney MF, Zettl AK (2013) Enhanced solid-state order and field-effect hole mobility through control of nanoscale polymer aggregation. J Am Chem Soc 135:19229–19236CrossRefGoogle Scholar
  33. 33.
    Huo L, Liu T, Sun X, Cai Y, Heeger AJ, Sun Y (2015) Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 97%. Adv Mater 27(18):2938–2944CrossRefGoogle Scholar
  34. 34.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09. vol Revision D.01. Gaussian, Inc., Wallingford CTGoogle Scholar
  35. 35.
    Pelletier M, Brisse F (1994) Bithiophene at 133 K. Acta Cryst C 50(12):1942–1945CrossRefGoogle Scholar
  36. 36.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120(1):215–241CrossRefGoogle Scholar
  37. 37.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96(9):6796–6806CrossRefGoogle Scholar
  38. 38.
    Grimme S, Hansen A, Brandenburg JG, Bannwarth C (2016) Dispersion-corrected mean-field electronic structure methods. Chem Rev 116(9):5105–5154CrossRefGoogle Scholar
  39. 39.
    Stefan G (2011) Density functional theory with London dispersion corrections. WIREs Comput Mol Sci 1(2):211–228CrossRefGoogle Scholar
  40. 40.
    Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A, Grimme S (2017) A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys Chem Chem Phys 19(48):32184–32215CrossRefGoogle Scholar
  41. 41.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498–6506CrossRefGoogle Scholar
  42. 42.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592CrossRefGoogle Scholar
  43. 43.
    Zheng C, Tao Y, Cao J-Z, Chen R-F, Zhao P, Wu X-J, Huang W (2012) The structural, electronic, and optical properties of ladder-type polyheterofluorenes: a theoretical study. J Mol Model 18(11):4929–4939CrossRefGoogle Scholar
  44. 44.
    Hermet P, Bantignies JL, Rahmani A, Sauvajol JL, Johnson MR (2004) Density-of-states of crystalline 2,2′-bithiophene: Ab Initio analysis and comparison with inelastic neutron scattering response. J Phys Condens Matter 16(41):7385–7396CrossRefGoogle Scholar
  45. 45.
    Rodríguez-Ropero F, Casanovas J, Alemán C (2005) Solvation of 2,2′-bithiophene: influence of the first solvation shell in the properties of π-conjugated systems. Chem Phys Lett 416(4–6):331–335CrossRefGoogle Scholar
  46. 46.
    Jin X-H, Sheberla D, Shimon LJ, Bendikov M (2014) Highly coplanar very long oligo(alkylfuran)s: a conjugated system with specific head-to-head defect. J Am Chem Soc 136(6):2592–2601CrossRefGoogle Scholar
  47. 47.
    Xiong Y, Tao JW, Wang RH, Qiao XL, Yang XD, Wang DL, Wu HZ, Li HX (2016) A furan-thiophene-based quinoidal compound: a new class of solution-processable high-performance n-type organic semiconductor. Adv Mater 28(28):5949–5953CrossRefGoogle Scholar
  48. 48.
    Olah GA, Watkins MI (1980) Comparison of rotational barriers of related diphenylmethyl anions and cations studied by 13C NMR spectroscopy: mechanistic and structural considerations. Proc Natl Acad Sci USA 77(2):703–707CrossRefGoogle Scholar
  49. 49.
    Roncali J, Blanchard P, Frère P (2005) 3,4-ethylenedioxythiophene (EDOT) as a versatile building block for advanced functional π-conjugated systems. J Mater Chem 15(16):1589–1610CrossRefGoogle Scholar
  50. 50.
    Samdal S, Samuelsen EJ, Volden HV (1993) Molecular conformation of 2,2′-bithiophene determined by gas phase electron diffraction and ab initio calculations. Synth Metals 59(2):259–265CrossRefGoogle Scholar
  51. 51.
    Duarte HA, Dos Santos HF, Rocha WR, De Almeida WB (2000) Improved quantum mechanical study of the potential energy surface for the bithiophene molecule. J Chem Phys 113(10):4206–4215CrossRefGoogle Scholar
  52. 52.
    Li Y, Zhang S, Zhang JZH, He X (2016) Assessing the performance of popular QM methods for calculation of conformational energies of Trialanine. Chem Phys Lett 652:136–141CrossRefGoogle Scholar
  53. 53.
    Tao Y, Guo X, Hao L, Chen R, Li H, Chen Y, Zhang X, Lai W, Huang W (2015) A solution-processed resonance host for highly efficient electrophosphorescent devices with extremely low efficiency roll-off. Adv Mater 27(43):6939–6944CrossRefGoogle Scholar
  54. 54.
    Chen R, Tang Y, Wan Y, Chen T, Zheng C, Qi Y, Cheng Y, Huang W (2017) Promoting singlet/triplet exciton transformation in organic optoelectronic molecules: role of excited state transition configuration. Sci Rep 7:6225–6235CrossRefGoogle Scholar
  55. 55.
    Huckaba AJ, Yella A, McNamara LE, Steen AE, Murphy JS, Carpenter CA, Puneky GD, Hammer NI, Nazeeruddin MK, Grätzel M (2016) Molecular design principles for near-infrared absorbing and emitting indolizine dyes. Chem Eur J 22(43):15536–15542CrossRefGoogle Scholar
  56. 56.
    Brückner S, Porzio W (1988) The structure of neutral polythiophene: an application of the Rietveld method. Makromol Chem 189(4):961–967CrossRefGoogle Scholar
  57. 57.
    Hamidi-Sakr A, Schiefer D, Covindarassou S, Biniek L, Sommer M, Brinkmann M (2016) Highly oriented and crystalline films of a phenyl-substituted polythiophene prepared by epitaxy: structural model and influence of molecular weight. Macromolecules 49(9):3452–3462CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations