Advertisement

Theoretical Chemistry Accounts

, 137:141 | Cite as

Pentacoordinated, square pyramidal cationic PCP Ni(II) pincer complexes: ELF and QTAIM topological analyses of nickel–triflate interactions

  • Christine Lepetit
  • Boris Vabre
  • Yves Canac
  • Mohammad Esmaïl Alikhani
  • Davit Zargarian
Regular Article
  • 55 Downloads
Part of the following topical collections:
  1. CHITEL 2017 - Paris - France

Abstract

A previous report introduced a new series of cationic nickel(II) complexes ligated by PCP-type pincer ligands featuring a charge-bearing imidazoliophosphine binding moiety and described their catalytic reactivities in hydroamination of nitriles into amidines. Solid-state characterization of the cationic acetonitrile adducts [(R-PIMIOCOP+)Ni(NCMe)(triflate)]+ (R-PIMIOCOP+ = κP,κC,κP-{2-(R2PO),6-(R2PC4H5N2)C6H3}; R = i-Pr, [1]+; Ph, [2]+) carried out in this follow-up study showed a distorted square pyramidal geometry and a Ni–triflate distance that was shorter than the sum of the Ni and O van der Waals radii, features suggestive of an unusual pentacoordination at the Ni(II) center. In contrast, the related aquo adduct [(i-Pr-PIMIOCOP+)Ni(OH2)(triflate)]+, [3]+, displayed a more conventional square planar geometry. Detailed structural comparisons and theoretical analyses conducted on these and related compounds have allowed a thorough examination of the Ni–triflate interactions in this family of complexes. Thus, topological analysis of the electron localization function (ELF) and quantum theory of atoms in molecules (QTAIM) showed that the Ni–triflate interaction is mostly ionic in nature, but has a weak covalence degree. The monosynaptic V(Ni) subvalence basin of nickel is indeed the ELF signature of the covalence degree of the ionic Ni–O bond, which can be quantified by the negative QTAIM energy density at the Ni–O bond critical point and by the absolute value of the ELF covariance 〈σ2(V(O), C(Ni))〉. The ionic character of the Ni–O bond is also reflected in an energy decomposition analysis, showing that this interaction is mostly electrostatic in nature. The computational analyses carried out on this family of complexes provide valuable insight into the character and relative strengths of various Ni–ligand interactions, and allow a number of useful conclusions, including the following: (1) significant Ni–anion interactions at the apical site are observed only with pincer-type ligands featuring at least one cationic imidazoliophosphine binding moiety; (2) these primarily electrostatic Ni–O interactions gain increasing covalence degree when different pincer backbone, co-ligand L, or counter-anions are introduced to enhance the electron deficiency of the Ni(II) center.

Keywords

Pentacoordination Pincer ELF QTAIM EDA Subvalence ELF basins Covalence degree Ionic bonding Imidazoliophosphine 

Notes

Acknowledgements

The theoretical studies were performed using HPC resources from CALMIP (Grant 2013-2018 [0851]]) and from GENCI-[CINES/IDRIS] (Grant 2013-2018 [085008]). The authors gratefully acknowledge the financial support provided by NSERC (Discovery grant to DZ) and FRQNT (Ph.D. fellowship to BV). The Direction des Relations Internationales of Université de Montréal and Université Toulouse 3-Paul Sabatier are gratefully acknowledged for the travel grants that made this collaborative project possible. The authors would like to thank Professor Bernard Silvi for fruitful discussions.

Supplementary material

214_2018_2332_MOESM1_ESM.pdf (511 kb)
Supplementary material 1 (PDF 511 kb)
214_2018_2332_MOESM2_ESM.txt (160 kb)
Supplementary material 2 (TXT 159 kb)
214_2018_2332_MOESM3_ESM.docx (1.9 mb)
Supplementary material 3 (DOCX 1927 kb)

References

  1. 1.
    Crabtree RH (2005) The organometallic chemistry of the transition metals, 4th edn. Wiley, Hoboken, p 35CrossRefGoogle Scholar
  2. 2.
    Huheey JE, Keiter EA, Keiter LR (1993) Inorganic chemistry: principles of structure and reactivity, 4th edn. Harper Collins College, New York, p 936Google Scholar
  3. 3.
    Roddick DM, Zargarian D (2014) Inorg Chim Acta 422:251–264CrossRefGoogle Scholar
  4. 4.
    Hope H, Olmstead MM, Power PP, Viggiano M (1984) Inorg Chem 23:326–330CrossRefGoogle Scholar
  5. 5.
    Stalick JK, Ibers JA (1969) Inorg Chem 8:1084–1090CrossRefGoogle Scholar
  6. 6.
    Klein HF, Dal A, Jung T, Flörke U, Haupt HJ (1998) Eur J Inorg Chem 12:2027–2032CrossRefGoogle Scholar
  7. 7.
    Klein HF, Zwiener M, Petermann A, Jung T, Cordier G, Hammerschmitt B, Flörke U, Haupt HJ, Dartiguenave Y (1994) Chem Ber 127:1569–1578CrossRefGoogle Scholar
  8. 8.
    Vabre B, Canac Y, Duhayon C, Chauvin R, Zargarian D (2012) Chem Commun 48:10446–10448CrossRefGoogle Scholar
  9. 9.
    Vabre B, Canac Y, Lepetit C, Duhayon C, Chauvin R, Zargarian D (2015) Chem Eur J 21:17403–17414CrossRefGoogle Scholar
  10. 10.
    Wu S, Li X, Xiong Z, Xu W, Lu Y, Sun H (2013) Organometallics 32:3227–3237CrossRefGoogle Scholar
  11. 11.
    Kozhanov KA, Bubnov MP, Vavilina NN, Efremova LY, Fukin GK, Cherkasov VK, Abakumov GA (2009) Polyhedron 28:2555–2558CrossRefGoogle Scholar
  12. 12.
    Kozhanov KA, Bubnov MP, Cherkasov VK, Vavilina NV, Efremova LY, Artyushin OI, Odinets IL, Abakumov GA (2008) Dalton Trans 21:2849–2853CrossRefGoogle Scholar
  13. 13.
    Kozhanov KA, Bubnov MP, Cherkasov VK, Fukin GK, Abakumov GA (2003) Chem Commun 20:2610CrossRefGoogle Scholar
  14. 14.
    Kozhanov KA, Bubnov MP, Cherkasov VK, Fukin GK, Abakumov GA (2004) Dalton Trans 18:2957–2962CrossRefGoogle Scholar
  15. 15.
    Addison AW, Rao NT, Reedijk J, van Rijn J, Verschoor GC (1984) J Chem Soc Dalton Trans (7):1349–1355Google Scholar
  16. 16.
    Zargarian D, Castonguay A, Spasyuk DM (2013) In: van Koten G, Milstein D (eds) Topics in organometallic chemistry, vol 40. Springer, Berlin, pp 131–174Google Scholar
  17. 17.
    Salah A, Offenstein C, Zargarian D (2011) Organometallics 30:5352–5364CrossRefGoogle Scholar
  18. 18.
    Noury S, Krokidis X, Fuster F, Silvi B (1999) Comput Chem 23:597–604CrossRefGoogle Scholar
  19. 19.
    Andres J, Feliz M, Fraxedas J, Hernandez V, Lopez-Navarrete JT, Llusar R, Sauthier G, Sensato FR, Silvi B, Bo C, Campanera JM (2007) Inorg Chem 46:2159–2166CrossRefGoogle Scholar
  20. 20.
    De Courcy B, Dognon J-P, Clavaguéra C, Gresh N, Piquemal J-P (2011) Int J Quant Chem 111:1213–1221CrossRefGoogle Scholar
  21. 21.
    de Courcy B, Pedersen LG, Parisel O, Gresh N, Silvi B, Pilmé J, Piquemal J-P (2010) J Chem Theor Comput 6:1048–1063CrossRefGoogle Scholar
  22. 22.
    Bader RFW (1990) Atoms in molecules. Clarendon Press, OxfordGoogle Scholar
  23. 23.
    Bader RFW, Essen H (1984) J Chem Phys 80:1943–1960CrossRefGoogle Scholar
  24. 24.
    Bianchi R, Gervasio G, Marabello D (2000) Inorg Chem 39:2360–2366CrossRefGoogle Scholar
  25. 25.
    Lepetit C, Fau P, Fajerwerg K, Kahn ML, Silvi B (2017) Coord Chem Rev 345:150–181CrossRefGoogle Scholar
  26. 26.
    Macchi P, Proserpio DM, Sironi A (1998) J Am Chem Soc 120:13429–13435CrossRefGoogle Scholar
  27. 27.
    Green MLH (1995) A new approach to the formal classification of the covalent compounds of the elements. J Organomet Chem 500:127–148CrossRefGoogle Scholar
  28. 28.
    Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117:5529–5542CrossRefGoogle Scholar
  29. 29.
    Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285:170–173CrossRefGoogle Scholar
  30. 30.
    Espinosa E, Alkorta I, Rozas I, Elguero J, Molins E (2001) Chem Phys Lett 336:457–461CrossRefGoogle Scholar
  31. 31.
    Ziegler T, Rauk A (1979) Inorg Chem 18:1558–1565CrossRefGoogle Scholar
  32. 32.
    Ziegler T, Rauk A (1979) Inorg Chem 18:1755–1759CrossRefGoogle Scholar
  33. 33.
    Bickelhaupt FM, Baerends EJ (2000) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 15. Wiley, New York, pp 1–86Google Scholar
  34. 34.
    Jacobsen H, Correa A, Poater A, Costabile C, Cavallo L (2009) Coord Chem Rev 253:687–703CrossRefGoogle Scholar
  35. 35.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian Inc., WallingfordGoogle Scholar
  36. 36.
    Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114CrossRefGoogle Scholar
  37. 37.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  38. 38.
    Silvi B, Savin A (1994) Nature 371:683–686CrossRefGoogle Scholar
  39. 39.
    Keith TA (2016) AIMAll (version 16.01.09). TK Gristmill Software, Overland ParkGoogle Scholar
  40. 40.
    Spackman MA (2015) Cryst Growth Des 15:5624–5628CrossRefGoogle Scholar
  41. 41.
    Nelyubina YV, Antipin MY, Lyssenko KA (2010) Russ Chem Rev 79:167–187CrossRefGoogle Scholar
  42. 42.
    Gatti C (2005) Z Kristallogr Cryst Mater 220:399–457CrossRefGoogle Scholar
  43. 43.
    Valyaev DA, Brousses R, Lugan N, Fernàndez I, Sierra MA (2011) Chem Eur J 17:6602–6605CrossRefGoogle Scholar
  44. 44.
    Borissova AO, Korlyukov AA, Antipin MY, Lyssenko KA (2008) J Phys Chem A 112:11519–11522CrossRefGoogle Scholar
  45. 45.
    Puntus LN, Lyssenko KA, Antipin MY, Bünzli JCG (2008) Inorg Chem 47:1105–11107CrossRefGoogle Scholar
  46. 46.
    Poater J, Duran M, Sola M, Silvi B (2005) Chem Rev 105:3911–3947CrossRefGoogle Scholar
  47. 47.
    Silvi B, Gillespie RJ, Gatti C (2013) Compr Inorg Chem II 9:187–226Google Scholar
  48. 48.
    Lepetit C, Silvi B, Chauvin R (2003) J Phys Chem A 107:464–473CrossRefGoogle Scholar
  49. 49.
    Silvi B (2004) Phys Chem Chem Phys 6:256–260CrossRefGoogle Scholar
  50. 50.
    te Velde G, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967CrossRefGoogle Scholar
  51. 51.
    Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Theor Chem Acc 99:391–403Google Scholar
  52. 52.
    ADF2013, SCM, Theoretical chemistry, Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com
  53. 53.
    Van Lenthe E, Baerends EJ (2003) J Comput Chem 24:1142–1156CrossRefGoogle Scholar
  54. 54.
    Pye CC, Ziegler T (1999) Theor Chem Acc 101:396–408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LCC-CNRSUniversité de Toulouse, CNRSToulouseFrance
  2. 2.Département de ChimieUniversité de MontréalMontréalCanada
  3. 3.UPMC Université Paris 06, MONARIS, UMR 8233, Université Pierre et Marie CurieSorbonne UniversitésParis Cedex 05France

Personalised recommendations