Advertisement

DFT and TD-DFT design of small π-conjugated molecules with narrow band gap and high efficiency for organic solar cells

  • Tarek Mestiri
  • Kamel Alimi
Regular Article
  • 114 Downloads

Abstract

Five copolymers noted cop 1, cop 2, cop 3, cop 4 and cop 5 are theoretically designed. Each has a DπA architecture based on triarylamine used as a donor unit D for its high charge carrier mobility and its excellent stability, and five heterocyclic acceptors A with high carriers mobility. The aim is searching narrow band and high efficiency donor materials for organic photovoltaic cells. Using density functional theory DFT and time-dependent density functional theory TD-DFT, molecular orbitals, electronic and optical properties, exciton binding energies and charge transfer process are all predicted for all copolymers. The results show that all copolymers can be used with (PCBM) to design organic heterojunction photovoltaic cells. While comparing the various copolymers, we have noticed that cop 2 and cop 5 show the best optical properties, exciton dissociation and holes transport capability is more favorable for them, which improves short-circuit current (Jsc) and a fill factor (FF). Finally, the power conversion of composites involving cop 2/PCBM as well as cop 5/PCBM, respectively 8% and 9%, provides their efficiency. These results demonstrate that cop 2 and cop 5 will be two promising candidates for organic photovoltaic performance devices.

Keywords

Density functional theory Low band gap Intermolecular charge transfer Donor–acceptor Organic solar cells 

Notes

Acknowledgements

We would like to thank Pierre Girard for technical support in the context of the Grenoble Centre d’Experimentation du Calcul Intensif en Chimie (CECIC) computers used for the calculations reported here.

References

  1. 1.
    Choi S, Potscavage WJ, Kippelen B (2009) Area-scaling of organic solar cells. J Appl Phys 106:054507–054516CrossRefGoogle Scholar
  2. 2.
    Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115:12666–12731CrossRefGoogle Scholar
  3. 3.
    Lu L, Xu T, Chen W, Landry ES, Yu L (2014) Ternary blend polymer solar cells with enhanced power conversion efficiency. Nat Photonics 8:716–722CrossRefGoogle Scholar
  4. 4.
    Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474CrossRefGoogle Scholar
  5. 5.
    Lin Y, Cheng P, Liu Y, Shi Q, Hu W, Li Y, Zhan X (2012) Small molecules based on bithiazole for solution-processed organic solar cells. Org Electron 13:673–680CrossRefGoogle Scholar
  6. 6.
    Lin HW, Kang HW, Huang ZY, Chen CW, Chen YH, Lin LY, Lin F, Wong KT (2012) An effective bilayer cathode buffer for highly efficient small molecule organic solar cells. Org Electron 13:1925–1929CrossRefGoogle Scholar
  7. 7.
    Steinberger S, Mishra A, Reinold E, Levichkov J, Uhrich C, Pfeiffer M, Bauerle P (2011) Vacuum-processed small molecule solar cells based on terminal acceptor-substituted low-band gap oligothiophenes. Chem Commun 47:1982–1984CrossRefGoogle Scholar
  8. 8.
    Chang CY, Wu CE, Chen SY, Cui C, Cheng YJ, Hsu CS, Wang YL, Li Y (2011) Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods. Angew Chem Int Ed 50:9386–9390CrossRefGoogle Scholar
  9. 9.
    Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L (2010) For the bright futurebulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:E135–E138CrossRefGoogle Scholar
  10. 10.
    Sharma GD, Mikroyannidis JA, Sharma SS, Thomas KRJ (2012) Bulk heterojunction organic photovoltaic devices based on small molecules featuring pyrrole and carbazole and 2-(4-nitrophenyl)acrylonitrile acceptor segments as donor and fullerene derivatives as acceptor. Dyes Pigm 94:320–329CrossRefGoogle Scholar
  11. 11.
    Revoju S, Biswas S, Eliasson B, Sharma GD (2018) Effect of acceptor strength on optical, electrochemical and photovoltaic properties of phenothiazine-based small molecule for bulk heterojunction organic solar cells. Dyes Pigm 149:830–842CrossRefGoogle Scholar
  12. 12.
    Chen KW, Lin LY, Li YH, Li YZ, Nguyen TP, Biring S, Liu SW, Wong KT (2018) Fluorination effects of A-D-A-type small molecules on physical property and the performance of organic solar cell. Org Electron 52:342–349CrossRefGoogle Scholar
  13. 13.
    Park M, Jung JW (2017) Anthracene-based perylene diimide electron-acceptor for fullerene-free organic solar cells. Dyes Pigm 143:301–307CrossRefGoogle Scholar
  14. 14.
    D’Olieslaeger L, Pirotte G, Cardinaletti I, D’Haen J, Manca J, Vanderzande D, Maes W, Ethirajan A (2017) Eco-friendly fabrication of PBDTTPD:PC71BM solar cells reaching a PCE of 3.8% using water-based nanoparticle dispersions. Org Electron 42:42–46CrossRefGoogle Scholar
  15. 15.
    Duan Y, Xu X, Li Y, Peng Q (2017) Recent development of perylene diimide-based small molecular non-fullerene acceptors in organic solar cells. Chin Chem Lett 28:2105–2115CrossRefGoogle Scholar
  16. 16.
    Ikram M, Murray R, Hussain A, Ali S, Shah I (2014) Hybrid organic solar cells using both ZnO and PCBM as electron acceptor materials. Mater Sci Eng B 189:64–69CrossRefGoogle Scholar
  17. 17.
    Li Z, Dong Q, Li Y, Xu B, Deng M, Pei J, Zhang J, Chen F, Wen S, Gao Y, Tian W (2011) Design and synthesis of solution processable small molecules towards high photovoltaic performance. J Mater Chem 21:2159–2168CrossRefGoogle Scholar
  18. 18.
    Oum K, Flender O, Lohse PW, Scholz M, Hagfeldt A, Boschloo G, Lenzer T (2014) Electron and hole transfer dynamics of a triarylamine-based dye with peripheral hole acceptors on TiO2 in the absence and presence of solvent. Phys Chem Chem Phys 16:8019–8029CrossRefGoogle Scholar
  19. 19.
    Chiu KY, Tran TTH, Wu CG, Chang SH, Yang TF, Su YO (2017) Electrochemical studies on triarylamines featuring an azobenzene substituent and new application for small-molecule organic photovoltaics. J Electroanal Chem 787:118–124CrossRefGoogle Scholar
  20. 20.
    Yuan R, Liu ZT, Wan Y, Liu Y, Wang Y-J, Ge W-H, Fang Y, Zhou S-L, Han X-E, Zhang P, Wu H (2016) New D-D-π-A-type indol-triarylamine sensitizers for efficient dye-sensitized solar cells. Synth Met 215:21–27CrossRefGoogle Scholar
  21. 21.
    Raju TB, Vaghasiya JV, Afroz MA, Soni SS, Iyer PK (2017) Twisted donor substituted simple thiophene dyes retard the dye aggregation and charge recombination in dye-sensitized solar cells. Org Electron 50:25–32CrossRefGoogle Scholar
  22. 22.
    Xu J, Wang L, Liang G, Bai Z, Wang L, Xu W, Shen X (2011) Conjugate spacer effect on molecular structures and absorption spectra of triphenylamine dyes for sensitized solar cells: density functional theory calculations. Spectrochim Acta A Mol Biomol Spectrosc 78:287–293CrossRefGoogle Scholar
  23. 23.
    Patel DG, Feng F, Ohnishi YY, Abboud KA, Hirata S, Schanze KS, Reynolds JR (2012) It takes more than an imine: the role of the central atom on the electron-accepting ability of benzotriazole and benzothiadiazole oligomers. J Am Chem Soc 134:2599–2612CrossRefGoogle Scholar
  24. 24.
    Wang M, Hu X, Liu P, Li W, Gong X, Huang F, Cao Y (2011) Donor–acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1, 2, 5]thiadiazole for high-performance polymer solar cells. J Am Chem Soc 133:9638–9641CrossRefGoogle Scholar
  25. 25.
    Yuan MC, Chiu MY, Chiang CM, Wei KH (2010) Synthesis and characterization of pyrido[3,4-b]pyrazine-based low-bandgap copolymers for bulk heterojunction solar cells. Macromolecules 43:6270–6277CrossRefGoogle Scholar
  26. 26.
    Abdelrazeka FM, Faddab AA, Elsayeda AN (2011) Novel synthesis of some new pyridazine and pyridazino [4,5-d]pyridazine derivatives. Synth Commun 41:1119–1126CrossRefGoogle Scholar
  27. 27.
    Theocharis AB, Alexandrou NE, Terzis A (1990) Generation and dienophilic properties of 1-benzyl-1H-1,2,3-triazolo[4,5-d]pyridazine-4,7-dione. J Heterocycl Chem 27:1741–1744CrossRefGoogle Scholar
  28. 28.
    Gendron D, Morin PO, Najari A, Leclerc M (2010) Synthesis of new pyridazinebased monomers and related polymers for photovoltaic applications. Macromol Rapid Commun 31:1090–1094CrossRefGoogle Scholar
  29. 29.
    Cheng KF, Chueh CC, Lin CH, Chen WC (2008) Synthesis, properties, and field effect transistor characteristics of new thiophene-[1,2,5]thiadiazolo[3,4-g]quinoxaline-thiophene-based conjugated polymers. J Polym Sci Polym Chem 46:6305–6316CrossRefGoogle Scholar
  30. 30.
    Elnagdi MH, Negm AM, Erian AW (1989) Studies with alkylheteroaromatic ndeficient compounds: novel synthesis of thieno[3,4-d]pyridazines and phthalazines. Liebigs Ann Chem 1989:1255–1256CrossRefGoogle Scholar
  31. 31.
    Sun Y, Duan L, Wei P, Qiao J, Dong G, Wang L, Qiu Y (2009) An ambipolar transporting naphtho[2,3-c][1, 2, 5]thiadiazole derivative with high electron and hole mobilities. Org Lett 11:2069–2072CrossRefGoogle Scholar
  32. 32.
    Weaver MS, Lidzey DG, Bradley DDC (1996) Use of poly(phenyl quinoxaline) as an electron transport material in polymer light-emitting diodes. Appl Phys Lett 69:881–883CrossRefGoogle Scholar
  33. 33.
    Balan A, Baran D, Sariciftci NS, Toppare L (2010) Electrochromic device and bulk heterojunction solar cell applications of poly 4,7-bis(2,3-dihydrothieno[3,4-b][1, 4]dioxin-5 yl)-2-dodecyl-2H-benzo [1–3]triazole (PBEBT). Sol Energy Mater Sol Cells 94:1797–1802CrossRefGoogle Scholar
  34. 34.
    Arı H, Büyükmumcu Z (2017) Comparison of DFT functionals for prediction of band gap of conjugated polymers and effect of HF exchange term percentage and basis set on the performance. Comput Mater Sci 138:70–76CrossRefGoogle Scholar
  35. 35.
    German E, Faccio R, Mombrúb AW (2018) Comparison of standard DFT and Hubbard-DFT methods in structural and electronic properties of TiO2 polymorphs and H-titanate ultrathin sheets for DSSC application. Appl Surf Sci 428:118–123CrossRefGoogle Scholar
  36. 36.
    Mbarek M, Abbassi F, Alimi K (2016) Complementary study based on DFT to describe the structure and properties relationship of diblock copolymer based on PVK and PPV. Physica B 497:45–50CrossRefGoogle Scholar
  37. 37.
    Mbarek M, Zaidi B, Alimi K (2012) Theoretical study of the alkoxyls groups effect on PPV-ether excited states, a relationship with femtosecond decay. Spectrochim Acta A 88:23–30CrossRefGoogle Scholar
  38. 38.
    Mabrouk A, Alimi K, Hamidi M, Bouachrine M, Molinié P (2005) Vibrational and electronic properties of PPV-derived co-polymers: PPV–ether and C1–4PPV–ether. Polymer 46:9928–9940CrossRefGoogle Scholar
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian09 revision D.01. Gaussian Inc., WallingfordGoogle Scholar
  40. 40.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098CrossRefGoogle Scholar
  41. 41.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785CrossRefGoogle Scholar
  42. 42.
    Mitin AV (2013) Polarization functions for the modified m6-31G basis sets for atoms Ga through Kr. J Comput Chem 34:2014–2019CrossRefGoogle Scholar
  43. 43.
    Bouzayen N, Zaidi B, Mabrouk A, Chemek M, Alimi K (2012) Density functional theory studies of new bipolar carbazole–benzothiazole: electronic and vibrational properties. Comput Theor Chem 984:1–8CrossRefGoogle Scholar
  44. 44.
    Adamo C, Jacquemin D (2013) The calculations of excited-state properties with time-dependent density functional theory. Chem Soc Rev 42:845–856CrossRefGoogle Scholar
  45. 45.
    Jamorski J, Lüthi HP (2003) Time-dependent density functional theory (TDDFT) study of the excited charge-transfer state formation of a series of aromatic donor-acceptor systems. J Am Chem Soc 125:252–264CrossRefGoogle Scholar
  46. 46.
    Okuno K, Shigeta Y, Kishi R, Miyasaka H, Nakano M (2012) Tuned CAM-B3LYP functional in the time-dependent density functional theory scheme for excitation energies and properties of diarylethene derivatives. J Photochem Photobiol A 235:29–34CrossRefGoogle Scholar
  47. 47.
    Rika K, Amos Roger D (2006) The application of CAM-B3LYP to the charge-transfer band problem of the zincbacteriochlorin–bacteriochlorin complex. Chem Phys Lett 420:106–109CrossRefGoogle Scholar
  48. 48.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  49. 49.
    Naseem S, Khalid M, Tahir MN, Halim MA, Braga AAC, Naseer MM, Shafiq Z (2017) Synthesis, structural, DFT studies, docking and antibacterial activity of a xanthene based hydrazone ligand. J Mol Struct 1143:235–244CrossRefGoogle Scholar
  50. 50.
    Somasundaram S, Kamaraj E, Hwang SJ, Jung S, Choi MG, Park S (2017) Synthesis, structural, and photophysical studies of π-fused acenaphtho [1,2-d]imidazole-based excited-state intramolecular proton transfer molecules. J Mol Struct 1137:43–49CrossRefGoogle Scholar
  51. 51.
    Mabrouk A, Azazi A, Alimi K (2013) Molecular structure–property engineering of low-band-gap copolymers, based on fluorene, for efficient bulk heterojunction solar cells: a density functional theory study. Polym Eng Sci 53:1040CrossRefGoogle Scholar
  52. 52.
    Mabrouk A, Alimi K, Molini P, Nguyen P (2006) A combined experimental and theoretical study on the effect of doping and interface formation on Ppv − ether copolymer. J Phys Chem B 110:1141–1150CrossRefGoogle Scholar
  53. 53.
    Walker B, Liu J, Kim C, Welch GC, Park JK, Lin J, Zalar P, Proctor CM, Seo JH, Bazan GC, Nguyen T-Q (2013) Optimization of energy levels by molecular design: evaluation of bis-diketopyrrolopyrrole molecular donor materials for bulk heterojunction solar cells. Energy Environ Sci 6:952–962CrossRefGoogle Scholar
  54. 54.
    Duan YA, Geng Y, Li HB, Jin JL, Wu Y, Su ZM (2013) Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells. J Comput Chem 34:1611–1619CrossRefGoogle Scholar
  55. 55.
    Wu Z, Fan B, Xue F, Adachi C, Ouyang J (2010) Organic molecules based on dithienyl-2,1,3-benzothiadiazole as new donor materials for solution-processed organic photovoltaic cells. Sol Energy Mater Sol Cells 94:2230–2237CrossRefGoogle Scholar
  56. 56.
    Zhang ZL, Zou LY, Ren AM, Liu YF, Feng JK, Sun CC (2013) Theoretical studies on the electronic structures and optical properties of star-shaped triazatruxene/heterofluorene co-polymers. Dyes Pigm 96:349–363CrossRefGoogle Scholar
  57. 57.
    Preat J, Jacquemin D, Perpete EA (2010) Design of new triphenylamine-sensitized solar cells: a theoretical approach. Sci Technol 44:5666–5671CrossRefGoogle Scholar
  58. 58.
    Le BT, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in chargetransfer excitations. J Chem Theory Comput 7:2498–2506CrossRefGoogle Scholar
  59. 59.
    Kose ME (2012) Evaluation of acceptor strength in thiophene coupled donor–acceptor chromophores for optimal design of organic photovoltaic materials. J Phys Chem A 116:12503–12509CrossRefGoogle Scholar
  60. 60.
    Clarke TM, Durrant JR (2010) Charge photogeneration in organic solar cells. Chem Rev 110:6736–6767CrossRefGoogle Scholar
  61. 61.
    Barbara PF, Meyer TJ, Ratner MA (1996) Contemporary issues in electron transfer research. J Phys Chem 100:13148–13168CrossRefGoogle Scholar
  62. 62.
    Voityuk AA (2006) Estimation of electronic coupling in π-stacked donor-bridge-acceptor systems: correction of the two-state model. J Chem Phys 124:064505CrossRefGoogle Scholar
  63. 63.
    Hsu CP (2009) The electronic couplings in electron transfer and excitation energy transfer. Acc Chem Res 42:509–518CrossRefGoogle Scholar
  64. 64.
    Asada T, Koseki S (2018) Simulation study of hole mobility in the amorphous phase of organic molecules. Org Electron 53:141–150CrossRefGoogle Scholar
  65. 65.
    Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction Solar cells—towards 10% energy-conversion efficiency. Adv Mater 18:789–794CrossRefGoogle Scholar
  66. 66.
    Liu X, Li M, He R, Shen W (2014) Theoretical investigations on fluorinated and cyano copolymers for improvements of photovoltaic performances. Phys Chem Chem Phys 16:311–323CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unité de Recherche, Matériaux Nouveaux et Dispositifs Electroniques Organiques (UR11ES55), Faculté des SciencesUniversité de MonastirMonastirTunisia

Personalised recommendations