Advertisement

Guanidinium cation–water clusters

  • M. Prakash
  • T. Vanidasan
  • V. Subramanian
Regular Article

Abstract

The gas-phase structure, stabilities, and vibrational stretching frequencies of hydrated guanidinium cation (Gdm+Wn, n = 1–6) have been calculated using ab initio and density functional theory methods. It is found from the optimized geometries of various clusters that water molecules interact with the Gdm+ through double H-bond (N–H···O) acceptor model. Evidences reveal that the sequential binding energies of Gdm+Wn clusters are similar to that of hydration of monovalent alkali metal ions and isoelectronic protonated carbonic acid. The calculated binding energy of the clusters increases with the increase in the number of water molecule. Results elicit that the stability of completely and symmetrically hydrated clusters is the highest when compared to that of partially and asymmetrically hydrated ones. It is interesting to note from the findings that the symmetrically hydrated Gdm+W6 cluster forms a tripod structure. The AIM theory provides useful information about different types of H-bonding interactions present in the hydrated Gdm+.

Keywords

Water clusters H-bonding AIM Red shift Ab initio and DFT 

Notes

Acknowledgements

This work is supported by DST India-European Union sponsored Project (HYPOMAP 8/233482/2008) and the Council of Scientific and Industrial Research (CSIR), India. M.P. also thanks SRM Supercomputer Centre (HPCC), SRM Institute of Science and Technology (SRM-IST) for providing the computational facility and financial support.

Supplementary material

214_2018_2293_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)

References

  1. 1.
    Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161CrossRefGoogle Scholar
  2. 2.
    Müller-Dethlefs K, Hobza P (2000) Chem Rev 100:143CrossRefGoogle Scholar
  3. 3.
    Buck U, Huisken F (2000) Chem Rev 100:3863CrossRefGoogle Scholar
  4. 4.
    Brutschy B (2000) Chem Rev 100:3891CrossRefGoogle Scholar
  5. 5.
    Kim KS, Tarakeshwar P, Lee JY (2000) Chem Rev 100:4145CrossRefGoogle Scholar
  6. 6.
    Gadre SR, Babu K, Rendell AP (2000) J Phys Chem A 104:8976CrossRefGoogle Scholar
  7. 7.
    Ando K, Hynes JT (1997) J Phys Chem B 101:10464CrossRefGoogle Scholar
  8. 8.
    Idupulapati N, Devanathan R, Dupuis M (2010) J Phys Chem A 114:6904CrossRefGoogle Scholar
  9. 9.
    Wang S, Bianco R, Hynes JT (2010) Phys Chem Chem Phys 12:8241CrossRefGoogle Scholar
  10. 10.
    Jordan KD, Johnson MA (2010) Science 329:42CrossRefGoogle Scholar
  11. 11.
    Christie RA, Jordan KD (2001) J Phys Chem A 105:7551CrossRefGoogle Scholar
  12. 12.
    Prakash M, Subramanian V (2016) J Mol Mod 22:293CrossRefGoogle Scholar
  13. 13.
    Singh NJ, Olleta AC, Kumer A, Park M, Yi HB, Bandyopadhyay I, Lee HM, Tarakeshwar P, Kim KS (2006) Theor Chem Acc 115:127CrossRefGoogle Scholar
  14. 14.
    Rao JS, Dinadayalane TC, Leszczynski J, Sastry GN (2008) J Phys Chem A 112:12944CrossRefGoogle Scholar
  15. 15.
    Bianco R, Hynes JT (2006) Acc Chem Res 39:159CrossRefGoogle Scholar
  16. 16.
    Cwiklik BJ, Slavicek P, Nolting D, Winter B, Jungwirth P (2008) J Phys Chem B 112:7355CrossRefGoogle Scholar
  17. 17.
    Zwier TS (2001) J Phys Chem A 105:8827CrossRefGoogle Scholar
  18. 18.
    Sicinska D, Paneth P, Truhlar DG (2002) J Phys Chem B 106:2708CrossRefGoogle Scholar
  19. 19.
    Mullin JM, Gordon MS (2009) J Phys Chem B 113:8657CrossRefGoogle Scholar
  20. 20.
    Thar J, Zahn S, Kirchner B (2008) J Phys Chem B 112:1456CrossRefGoogle Scholar
  21. 21.
    Im S, Jang SW, Lee S, Lee Y, Kim B (2008) J Phys Chem A 112:9767CrossRefGoogle Scholar
  22. 22.
    Scheiner S, Kar T, Pattanayak J (2002) J Am Chem Soc 124:13257CrossRefGoogle Scholar
  23. 23.
    Andrei HS, Solca N, Dopfer O (2006) Chem Phys Chem 7:107CrossRefGoogle Scholar
  24. 24.
    Adesokan A, Chaban GM, Dopfer O, Gerber RB (2007) J Phys Chem A 111:7374CrossRefGoogle Scholar
  25. 25.
    Biswal HS, Wateganokar S (2009) J Phys Chem A 113:12763CrossRefGoogle Scholar
  26. 26.
    Reddy LS, Basavoju S, Vangala VR, Nangia A (2006) Gryst Growth Des 6:161CrossRefGoogle Scholar
  27. 27.
    Reddy LS, Chandran SK, George S, Babu NJ, Nangia A (2007) Gryst Growth Des 7:2675CrossRefGoogle Scholar
  28. 28.
    Sakota K, Shimazaki Y, Sekiya H (2011) Phys Chem Chem Phys 13:6411CrossRefGoogle Scholar
  29. 29.
    Tajkhorshid E, Jalkanen KJ, Suhai S (1998) J Phys Chem 102:5899CrossRefGoogle Scholar
  30. 30.
    Knapp-Mohammady M, Jalkanen KJ, Nardi F, Wade RC, Suhai S (1999) Chem Phys 240:63CrossRefGoogle Scholar
  31. 31.
    Gao B, Wyttenbach T, Bowers MT (2009) J Phys Chem B 113:9995CrossRefGoogle Scholar
  32. 32.
    Vondradek J, Mason PE, Heyda J, Collins KD, Jungwirth P (2009) J Phys Chem B 113:9041CrossRefGoogle Scholar
  33. 33.
    Gund P (1972) J Chem Educ 49:100CrossRefGoogle Scholar
  34. 34.
    Wiberg KB (1990) J Am Chem Soc 112:4177CrossRefGoogle Scholar
  35. 35.
    Scott JN, Nucci NV, Vanderkooi JM (2008) J Phys Chem A 112:10939CrossRefGoogle Scholar
  36. 36.
    Vorobyev DY, Kuo CH, Chen JX, Kuroda DG, Scott JN, Vanderkooi JM, Hochstrasser RM (2009) J Phys Chem B 113:15382CrossRefGoogle Scholar
  37. 37.
    Vorobyev DY, Kuo CH, Chen JX, Kuroda DG, Scott JN, Vanderkooi JM, Hochstrasser RM (2009) J Phys Chem B 114:2944CrossRefGoogle Scholar
  38. 38.
    Mason PE, Neilson GW, Enderby JE, Saboungi ML, Dempsey CE, MacKerell AD, Brady JW (2004) J Am Chem Soc 126:11462CrossRefGoogle Scholar
  39. 39.
    Mason PE, Dempsey CE, Neilson GW, Brady JW (2005) J Phys Chem B 109:24185CrossRefGoogle Scholar
  40. 40.
    Mason PE, Dempsey CE, Neilson GW, Kline SR, Brady JW (2009) J Am Chem Soc 131:16689CrossRefGoogle Scholar
  41. 41.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, OxfordGoogle Scholar
  42. 42.
    Biegler-Konig F, Schonbohm J, Derdau R, Bayles D, Bader RFW (2000) AIM 2000, version 1. Bielefeld, GermanyGoogle Scholar
  43. 43.
    Jiang JC, Chaudhuri C, Lee YT, Chang HC (2002) J Phys Chem A 106:10937CrossRefGoogle Scholar
  44. 44.
    Wu CC, Lin CK, Chang HC, Jiang JC, Kuo JL, Klein MLJ (2005) Chem Phys 122:074315Google Scholar
  45. 45.
    Prakash M, Subramanian V (2011) Phys Chem Chem Phys 13:21479CrossRefGoogle Scholar
  46. 46.
    Lin CK, Wu CC, Wang YS, Lee YT, Chang HC, Kuo JL, Klein ML (2005) Phys Chem Chem Phys 7:938CrossRefGoogle Scholar
  47. 47.
    Prakash M, Subramanian V, Gadre SR (2009) J Phys Chem A 113:12260CrossRefGoogle Scholar
  48. 48.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  49. 49.
    Frisch MJ et al (2009) Gaussian 09 Revision A 0.2. Gaussian Inc, Wallingford, CTGoogle Scholar
  50. 50.
    Sivashankar K (2000) Proc Indian Acad Sci (Chem Sci) 112:607CrossRefGoogle Scholar
  51. 51.
    Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908CrossRefGoogle Scholar
  52. 52.
    Zhao Y, Truhlar DG (2005) J Phys Chem A 109:5656CrossRefGoogle Scholar
  53. 53.
    Parthasarathi R, Elango M, Subramanian V, Sathyamurthy N (2009) J Phys Chem A 113:3744CrossRefGoogle Scholar
  54. 54.
    Dzidic I, Kebarle PJ (1970) Phys Chem 74:1466CrossRefGoogle Scholar
  55. 55.
    Grabowski SJ (2001) J Phys Chem A 105:10739CrossRefGoogle Scholar
  56. 56.
    Scheiner S, Grabowski SJ, Kar T (2001) J Phys Chem A 105:10607CrossRefGoogle Scholar
  57. 57.
    Prakash M, Gopalsamy K, Subramanian V (2009) J Phys Chem A 113:13845CrossRefGoogle Scholar
  58. 58.
    Mandal A, Prakash M, Kumar RM, Parthasarathi R, Subramanian V (2010) J Phys Chem A 114:2250CrossRefGoogle Scholar
  59. 59.
    Prakash M, Chambaud G, Al-Mogren MM, Hochlaf M (2014) J Mol Mod 20:2534CrossRefGoogle Scholar
  60. 60.
    Parthasarathi R, Subramanian V, Sathyamurthy N (2005) J Phys Chem A 109:843CrossRefGoogle Scholar
  61. 61.
    Parthasarathi R, Subramanian V, Sathyamurthy N (2006) J Phys Chem A 110:3349CrossRefGoogle Scholar
  62. 62.
    Park M, Shin I, Singh NJ, Kim KS (2007) J Phys Chem A 111:10692CrossRefGoogle Scholar
  63. 63.
    Prakash M, Gopalsamy K, Subramanian V (2011) J Chem Phys 135:214308CrossRefGoogle Scholar
  64. 64.
    Drozd M (2007) Mat Sci Eng B 136:20CrossRefGoogle Scholar
  65. 65.
    Zwier TS (2004) Science 304:1119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and SRM Research InstituteSRM Institute of Science and TechnologyKattankulathurIndia
  2. 2.Chemical LaboratoryCSIR-Central Leather Research InstituteAdyar, ChennaiIndia
  3. 3.Academy of Scientific and Innovative Research (AcSIR)ChennaiIndia

Personalised recommendations