Advertisement

Simple computational screening of potential singlet fission molecules

  • Christophe Match
  • Jeffery Perkins
  • Georg Schreckenbach
Regular Article

Abstract

Singlet fission (SF) is a particularly interesting process that can ultimately excite two electrons using a single photon and has strong potential for increasing the efficiency of photovoltaic devices (solar cells). One limitation of SF research is the relatively small number of known materials that undergo efficient SF. With this limitation in mind, we have used simple computational criteria (TD-DFT excitation energies) to screen various chromophores. Starting from known SF molecules (pentacene, tetracene, pyrene, isobenzofuran, among others), the influence of peripheral substituents was investigated. Depending on the starting molecule and the type of substitution (e.g., symmetric vs. asymmetric, electron donating vs. withdrawing), the influence of chemical modifications is often modest but sometimes large enough to significantly influence the energetics of SF. Specifically, we look at systematic trends of excitation energies among pentacene derivatives and calculated the energy change for SF to estimate the degree of spontaneity, compared to pentacene. The most significant changes are generally caused by substituent groups containing either nitrogen or oxygen, when they are placed opposite each other in the middle of the pentacene molecule. Of all other molecules tested in addition to pentacene and tetracene, only isobenzofuran derivatives were predicted to satisfy all required energetic conditions for efficient SF.

Keywords

Singlet fission Solar cells Photovoltaic devices TD-DFT Excitation energies Pentacene 

Notes

Acknowledgements

The authors acknowledge support by the Natural Sciences and Engineering Council of Canada (NSERC: Discovery Grant; Undergraduate Student Research Award), and the University of Manitoba.

Supplementary material

214_2018_2290_MOESM1_ESM.docx (133 kb)
Supplementary material 1 (DOCX 132 kb)

References

  1. 1.
    Smith MB, Michl J (2010) Singlet fission. Chem Rev 110:6891–6936.  https://doi.org/10.1021/cr1002613 CrossRefPubMedGoogle Scholar
  2. 2.
    Smith MB, Michl J (2013) Recent advances in singlet fission. Annu Rev Phys Chem 64:361–386.  https://doi.org/10.1146/annurev-physchem-040412-110130 CrossRefPubMedGoogle Scholar
  3. 3.
    Paci I, Johnson JC, Chen X et al (2006) Singlet fission for dye-sensitized solar cells: can a suitable sensitizer be found? J Am Chem Soc 128:16546–16553.  https://doi.org/10.1021/ja063980h CrossRefPubMedGoogle Scholar
  4. 4.
    Hanna MC, Nozik AJ (2006) Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J Appl Phys.  https://doi.org/10.1063/1.2356795 CrossRefGoogle Scholar
  5. 5.
    Congreve DN, Lee J, Thompson NJ et al (2013) External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science (80-) 340:334–337.  https://doi.org/10.1126/science.1232994 CrossRefGoogle Scholar
  6. 6.
    Schrauben JN, Ryerson JL, Michl J, Johnson JC (2014) Mechanism of singlet fission in thin films of 1,3-diphenylisobenzofuran. J Am Chem Soc 136:7363–7373.  https://doi.org/10.1021/ja501337b CrossRefPubMedGoogle Scholar
  7. 7.
    Johnson JC, Nozik AJ, Michl J (2013) The role of chromophore coupling in singlet fission. Acc Chem Res 46:1290–1299.  https://doi.org/10.1021/ar300193r CrossRefPubMedGoogle Scholar
  8. 8.
    Greyson EC, Vura-Weis J, Michl J, Ratner MA (2010) A mechanistic investigation of singlet exciton fission: maximizing the triplet yield within the regime of fast coherent electron transfer. J Phys Chem B 114:14168–14177.  https://doi.org/10.1021/jp907392q CrossRefPubMedGoogle Scholar
  9. 9.
    Yost SR, Lee J, Wilson MWB et al (2014) A transferable model for singlet-fission kinetics. Nat Chem 6:492–497.  https://doi.org/10.1038/nchem.1945 CrossRefPubMedGoogle Scholar
  10. 10.
    Kolomeiskiy A, Feng X, Krylov AI (2014) A simple kinetic model for singlet fission: from electronic structure to macroscopic rates. J Phys Chem C 118:5188–5195.  https://doi.org/10.1021/jp4128176 CrossRefGoogle Scholar
  11. 11.
    Chan WL, Berkelbach TC, Provorse MR et al (2013) The quantum coherent mechanism for singlet fission: experiment and theory. Acc Chem Res 46:1321–1329.  https://doi.org/10.1021/ar300286s CrossRefPubMedGoogle Scholar
  12. 12.
    Chan W-L, Ligges M, Zhu X-Y (2012) The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nat Chem 4:840–845.  https://doi.org/10.1038/nchem.1436 CrossRefPubMedGoogle Scholar
  13. 13.
    Zeng T (2016) Through-linker intramolecular singlet fission: general mechanism and designing small chromophores. J Phys Chem Lett 7:4405–4412.  https://doi.org/10.1021/acs.jpclett.6b02131 CrossRefPubMedGoogle Scholar
  14. 14.
    Zeng T, Goel P (2016) Design of small intramolecular singlet fission chromophores: an azaborine candidate and general small size effects. J Phys Chem Lett 7:1351–1358.  https://doi.org/10.1021/acs.jpclett.6b00356 CrossRefPubMedGoogle Scholar
  15. 15.
    Zimmerman PM, Bell F, Casanova D, Head-Gordon M (2011) Mechanism for singlet fission in pentacene and tetracene: from single exciton to two triplets. J Am Chem Soc 133:19944–19952.  https://doi.org/10.1021/ja208431r CrossRefPubMedGoogle Scholar
  16. 16.
    Zimmerman PM, Musgrave CB, Head-Gordon M (2013) A correlated electron view of singlet fission. Acc Chem Res 46:1339–1347.  https://doi.org/10.1021/ar3001734 CrossRefPubMedGoogle Scholar
  17. 17.
    Zhu X (2013) Exceeding the limit in solar energy conversion with multiple excitons. Acc Chem Res 46:1239–1241.  https://doi.org/10.1021/ar4001235 CrossRefPubMedGoogle Scholar
  18. 18.
    Bardeen CJ (2014) The structure and dynamics of molecular excitons. Annu Rev Phys Chem 65:127–148.  https://doi.org/10.1146/annurev-physchem-040513-103654 CrossRefPubMedGoogle Scholar
  19. 19.
    Japahuge A, Zeng T (2018) Theoretical studies of singlet fission: searching for materials and exploring mechanisms. Chem Plus Chem 83:1–38.  https://doi.org/10.1002/cplu.201700489 CrossRefGoogle Scholar
  20. 20.
    Greyson EC, Stepp BR, Chen X et al (2010) Singlet exciton fission for solar cell applications: energy aspects of interchromophore coupling. J Phys Chem B 114:14223–14232.  https://doi.org/10.1021/jp909002d CrossRefPubMedGoogle Scholar
  21. 21.
    Valiev M, Bylaska EJ, Govind N et al (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477–1489.  https://doi.org/10.1016/j.cpc.2010.04.018 CrossRefGoogle Scholar
  22. 22.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871.  https://doi.org/10.1103/PhysRev.136.B864 CrossRefGoogle Scholar
  23. 23.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138.  https://doi.org/10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  24. 24.
    Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci U S A 76:6062–6065CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Parr RG, Weitao Y (1989) Density-functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  26. 26.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652.  https://doi.org/10.1063/1.464913 CrossRefGoogle Scholar
  27. 27.
    Devlin FJ, Finley JW, Stephens PJ, Frisch MJ (1995) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields: a comparison of local, nonlocal, and hybrid density functionals. J Phys Chem 99:16883–16902.  https://doi.org/10.1021/j100046a014 CrossRefGoogle Scholar
  28. 28.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170.  https://doi.org/10.1063/1.478522 CrossRefGoogle Scholar
  29. 29.
    Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J Chem Phys 110:5029–5036.  https://doi.org/10.1063/1.478401 CrossRefGoogle Scholar
  30. 30.
    Adamo C, Scuseria GE, Barone V (1999) Accurate excitation energies from time-dependent density functional theory: assessing the PBE0 model. J Chem Phys 111:2889–2899.  https://doi.org/10.1063/1.479571 CrossRefGoogle Scholar
  31. 31.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57.  https://doi.org/10.1016/j.cplett.2004.06.011 CrossRefGoogle Scholar
  32. 32.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115:3540–3544.  https://doi.org/10.1063/1.1383587 CrossRefGoogle Scholar
  33. 33.
    Song J-W, Hirosawa T, Tsuneda T, Hirao K (2007) Long-range corrected density functional calculations of chemical reactions: redetermination of parameter. J Chem Phys 126:154105.  https://doi.org/10.1063/1.2721532 CrossRefPubMedGoogle Scholar
  34. 34.
    Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000.  https://doi.org/10.1103/PhysRevLett.52.997 CrossRefGoogle Scholar
  35. 35.
    Gross EKU, Ullrich CA, Gossmann UJ (1995) Density functional theory of time-dependent systems. In: Gross EKU, Dreizler RM (eds) Density functional theory. Springer, Boston, pp 149–171CrossRefGoogle Scholar
  36. 36.
    Casida ME (1995) Time-dependent density functional response theory for molecules. In: Chong DP (ed) Recent advances in density functional methods, vol I. World Scientic, Singapore, pp 155–192.  https://doi.org/10.1142/9789812830586_0005 CrossRefGoogle Scholar
  37. 37.
    Marques MAL, Gross EKU (2003) Time-dependent density functional theory. In: Fiolhais C, Nogueira F, Marques MAL (eds) A primer in density functional theory. Springer, Berlin, pp 144–184CrossRefGoogle Scholar
  38. 38.
    Peach MJG, Williamson MJ, Tozer DJ (2011) Influence of triplet instabilities in TDDFT. J Chem Theory Comput 7:3578–3585.  https://doi.org/10.1021/ct200651r CrossRefPubMedGoogle Scholar
  39. 39.
    Tamm IG (1945) Relativistic interaction of elementary particles. J Phys Acad Sci USSR 9:449Google Scholar
  40. 40.
    Dancoff SM (1950) Non-adiabatic meson theory of nuclear forces. Phys Rev 78:382–385.  https://doi.org/10.1103/PhysRev.78.382 CrossRefGoogle Scholar
  41. 41.
    Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805.  https://doi.org/10.1039/P29930000799 CrossRefGoogle Scholar
  42. 42.
    Burgos J, Pope M, Swenberg CE, Alfano RR (1977) Heterofission in pentacene-doped tetracene single crystals. Phys Status Solidi 83:249–256.  https://doi.org/10.1002/pssb.2220830127 CrossRefGoogle Scholar
  43. 43.
    Lee KO, Gan TT (1977) Influence of substrate temperature on the optical properties of evaporated films of pentacene. Chem Phys Lett 51:120–124.  https://doi.org/10.1016/0009-2614(77)85368-2 CrossRefGoogle Scholar
  44. 44.
    Sebastian L, Weiser G, Bässler H (1981) Charge transfer transitions in solid tetracene and pentacene studied by electroabsorption. Chem Phys 61:125–135.  https://doi.org/10.1016/0301-0104(81)85055-0 CrossRefGoogle Scholar
  45. 45.
    Chan W-L, Ligges M, Jailaubekov A et al (2011) Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science (80-) 334:1541–1545.  https://doi.org/10.1126/science.1213986 CrossRefGoogle Scholar
  46. 46.
    Wilson MWB, Rao A, Ehrler B, Friend RH (2013) Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices. Acc Chem Res 46:1330–1338.  https://doi.org/10.1021/ar300345h CrossRefPubMedGoogle Scholar
  47. 47.
    Geacintov N, Pope M, Vogel F (1969) Effect of magnetic field on the fluorescence of tetracene crystals: exciton fission. Phys Rev Lett 22:593–596.  https://doi.org/10.1103/PhysRevLett.22.593 CrossRefGoogle Scholar
  48. 48.
    Groff RP, Avakian P, Merrifield RE (1970) Coexistence of exciton fission and fusion in tetracene crystals. Phys Rev B 1:815–817.  https://doi.org/10.1103/PhysRevB.1.815 CrossRefGoogle Scholar
  49. 49.
    Chan W-L, Tritsch JR, Zhu X-Y (2012) Harvesting singlet fission for solar energy conversion: one- versus two-electron transfer from the quantum mechanical superposition. J Am Chem Soc 134:18295–18302.  https://doi.org/10.1021/ja306271y CrossRefPubMedGoogle Scholar
  50. 50.
    Burdett JJ, Bardeen CJ (2013) The dynamics of singlet fission in crystalline tetracene and covalent analogs. Acc Chem Res 46:1312–1320.  https://doi.org/10.1021/ar300191w CrossRefPubMedGoogle Scholar
  51. 51.
    Kaloni TP, Schreckenbach G, Freund MS, Schwingenschlög U (2016) Current developments in silicene and germanene. Phys Status Solidi Rapid Res Lett 10:133–142.  https://doi.org/10.1002/pssr.201510338 CrossRefGoogle Scholar
  52. 52.
    Maliakal A, Raghavachari K, Katz H et al (2004) Photochemical stability of pentacene and a substituted pentacene in solution and in thin films. Chem Mater 16:4980–4986.  https://doi.org/10.1021/cm049060k CrossRefGoogle Scholar
  53. 53.
    Ryno SM, Risko C, Brédas JL (2014) Impact of molecular packing on electronic polarization in organic crystals: the case of pentacene vs TIPS-pentacene. J Am Chem Soc 136:6421–6427.  https://doi.org/10.1021/ja501725s CrossRefPubMedGoogle Scholar
  54. 54.
    Akdag A, Havlas Z, Michl J (2012) Search for a small chromophore with efficient singlet fission: biradicaloid heterocycles. J Am Chem Soc 134:14624–14631.  https://doi.org/10.1021/ja3063327 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ManitobaWinnipegCanada

Personalised recommendations