Ab initio molecular dynamics study of overtone excitations in formic acid and its water complex

  • Teemu Järvinen
  • Jan Lundell
  • Przemysław Dopieralski
Regular Article
Part of the following topical collections:
  1. First European Symposium on Chemical Bonding


In this article, we present results from ab initio molecular dynamics simulation of overtone excitation in formic acid monomer and its water complex in the gas phase. For the monomer, a conformation change is observed employing both OH and CH vibrational excitations, which supports experimental findings. In the formic acid–water complex, interconversion also takes place, but it proceeds via hydrogen exchange rather than via intramolecular reaction. Simulations raise a question on effect of quantum and matrix effects to the results. Also, a brief test of different computation methods was done on the system.


Formic acid Overtone Proton exchange Vibration induced chemistry 



The CSC - Center for Scientific Computing (Espoo, Finland) is thanked for the computational time allocated to this research. This research was supported by the Academy of Finland research project “Vibrational excitation induced chemistry” (Proj. No 286844), and we (P.D.) gratefully acknowledge financial support from the National Science Center Poland (2016/23/B/ST4/01099).


  1. 1.
    Pettersson M, Lundell J, Khriachtchev L, Räsänen M (1997) J Am Chem Soc 119(48):11715. CrossRefGoogle Scholar
  2. 2.
    Olbert-Majkut A, Ahokas J, Pettersson M, Lundell J (2013) J Phys Chem A 117(7):1492. CrossRefPubMedGoogle Scholar
  3. 3.
    Olbert-Majkut A, Ahokas J, Lundell J, Pettersson M (2010) Phys Chem Chem Phys 12:7138. CrossRefPubMedGoogle Scholar
  4. 4.
    Olbert-Majkut A, Ahokas J, Lundell J, Pettersson M (2011) J Raman Spectrosc 42(8):1670. CrossRefGoogle Scholar
  5. 5.
    Marushkevich K, Khriachtchev L, Räsänen M, Melavuori M, Lundell J (2012) J Phys Chem A 116(9):2101. CrossRefPubMedGoogle Scholar
  6. 6.
    Marushkevich K, Khriachtchev L, Lundell J, Domanskaya A, Räsänen M (2010) J Phys Chem A 114(10):3495. CrossRefPubMedGoogle Scholar
  7. 7.
    Marushkevich K, Khriachtchev L, Lundell J, Räsänen M (2006) J Am Chem Soc 128(37):12060. CrossRefPubMedGoogle Scholar
  8. 8.
    Pettersson M, Maçôas EMS, Khriachtchev L, Lundell J, Fausto R, Räsänen M (2002) J Chem Phys 117(20):9095. CrossRefGoogle Scholar
  9. 9.
    Marushkevich K, Khriachtchev L, Räsänen M (2007) J Phys Chem A 111(11):2040. CrossRefPubMedGoogle Scholar
  10. 10.
    Olbert-Majkut A, Lundell J, Wierzejewska M (2014) J Phys Chem A 118(2):350. CrossRefPubMedGoogle Scholar
  11. 11.
    Car R, Parrinello M (1985) Phys Rev Lett 55:2471. CrossRefPubMedGoogle Scholar
  12. 12.
    Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. 13. CPMD, Copyright IBM Corp 1990–2015
  14. 14.
    Troullier N, Martins JL (1991) Phys. Rev. B 43:1993. CrossRefGoogle Scholar
  15. 15.
    Martyna GJ, Tuckerman ME (1999) J Chem Phys 110(6):2810. CrossRefGoogle Scholar
  16. 16.
    Ivanov SD, Grant IM, Marx D (2015) J Chem Phys 143(12):124304. CrossRefPubMedGoogle Scholar
  17. 17.
    Tuckerman ME, Parrinello M (1994) J Chem Phys 101(2):1302. CrossRefGoogle Scholar
  18. 18.
    Lee PM (2012) Bayesian statistics an introduction, 4th edn. Wiley, LondonGoogle Scholar
  19. 19.
    Neese F (2012) Wiley Interdiscip Rev: Comput Mol Sci 2(1):73. CrossRefGoogle Scholar
  20. 20.
    Tew DP, Mizukami W (2016) J Phys Chem A 120(49):9815. CrossRefPubMedGoogle Scholar
  21. 21.
    Maças EM, Lundell J, Pettersson M, Khriachtchev L, Fausto R, Räsänen M (2003) J Mol Spectrosc 219(1):70. CrossRefGoogle Scholar
  22. 22.
    Alavi S, Taghikhani M (2012) Chem Phys 402:105. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of JyväskyläJyväskyläFinland
  2. 2.University of WrocławWrocławPoland

Personalised recommendations