Advertisement

Intramolecular magnesium bonds in malonaldehyde-like systems: a critical view of the resonance-assisted phenomena

  • Pablo Sanz
  • M. Merced Montero-Campillo
  • Otilia Mó
  • Manuel Yáñez
  • Ibon Alkorta
  • José Elguero
Regular Article
Part of the following topical collections:
  1. CHITEL 2017 - Paris - France

Abstract

Through the use of high-level G4-theory calculations, we have investigated the structure, stability, and bonding of a set of Mg derivatives formed by replacing the –OH group of malonaldehyde or only the hydrogen atom of this group by a –MgH group. To give insight into the resonance-assisted phenomenon, which might be involved in the stabilization of these compounds, we also included the corresponding saturated analogs in our survey. The effect of the rigidity of the molecular framework was considered by analyzing the Mg derivatives of (Z)-4-(hydroxymethylene)cyclobut-2-enone, obtained through the same substitutions mentioned above. The effect of replacing the carbonyl group by an imino group was also contemplated. In all cases, the global minimum is a cyclic conformer stabilized through the formation of rather strong intramolecular magnesium bonds. The strength of these interactions is directly related with the intrinsic basicity of the carbonyl group (or the imino group) and the intrinsic acidity of the –MgH group, rather than with a resonance-assisted phenomenon. As a matter of fact, for all the investigated systems, the conclusion is that resonance in the cyclic conformer is directly correlated with the strength of the intramolecular magnesium bond, and not vice versa. Interestingly, the strength and characteristics of these interactions for these Mg-containing derivatives are very similar to those of the corresponding Be-containing analogs.

Keywords

Ab initio calculations Intramolecular interactions Magnesium bonds Beryllium bonds Magnesium-bonding-assisted resonance (MgBAR) 

Notes

Acknowledgements

Work supported by the Projects CTQ2015-63997-C2 and CTQ2016-76061-P of the Ministerio de Economía y Competitividad of Spain, FOTOCARBON-CM S2013/MIT-2841 of the Comunidad Autónoma de Madrid and by the COST Action CM1204 of the EU Framework Programme. Horizon 2020. Computational time at Centro de Computación Científica (CCC) of Universidad Autónoma de Madrid is also acknowledged.

Supplementary material

214_2018_2274_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1045 kb)

References

  1. 1.
    Margenau H, Kestner N (1969) Theory of inter-molecular force. Pergamon Press, New YorkGoogle Scholar
  2. 2.
    Kollman PA, Allen LC (1969) J Chem Phys 51:3286CrossRefGoogle Scholar
  3. 3.
    Vanthiel M, Becker ED, Pimentel GC (1957) J Chem Phys 27:486–490CrossRefGoogle Scholar
  4. 4.
    Hurtado M, Yáñez M, Herrero R, Guerrero A, Dávalos JZ, Abboud J-LM, Khater B, Guillemin JC (2009) Chem Eur J 15:4622–4629CrossRefPubMedGoogle Scholar
  5. 5.
    Yáñez M, Sanz P, Mó O, Alkorta I, Elguero J (2009) J Chem Theor Comput 5:2763–2771CrossRefGoogle Scholar
  6. 6.
    Mó O, Yáñez M, Elguero J (1992) J Chem Phys 97:6628–6638CrossRefGoogle Scholar
  7. 7.
    Xantheas SS, Dunning TH (1993) J Chem Phys 98:8037–8040CrossRefGoogle Scholar
  8. 8.
    Mó O, Yáñez M, Alkorta I, Elguero J (2012) J Chem Theory Comput 8:2293–2300CrossRefPubMedGoogle Scholar
  9. 9.
    Brea O, Alkorta I, Corral I, Mó O, Yáñez M, Elguero J (2017) in Intramolecular beryllium bonds. Further insights into resonance assistance phenomena, Vol (Ed. Novoa JJ), The Royal Society of Chemistry, London, pp 530–558Google Scholar
  10. 10.
    Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111:1023–1028CrossRefGoogle Scholar
  11. 11.
    Bertolasi V, Nanni L, Gilli P, Ferretti V, Gilli G, Issa YM, Sherif OE (1994) New J Chem 18:251–261Google Scholar
  12. 12.
    Bertolasi V, Gilli P, Ferretti V, Gilli G (1997) J Chem Soc Perkin Trans 2:945–952CrossRefGoogle Scholar
  13. 13.
    Mahmudov KT, Pombeiro AJL (2016) Chem Eur J 22:16356–16398CrossRefPubMedGoogle Scholar
  14. 14.
    Wolters LP, Smits NWG, Guerra CF (2015) Phys Chem Chem Phys 17:1585–1592CrossRefPubMedGoogle Scholar
  15. 15.
    Alkorta I, Elguero J, Mó O, Yáñez M, Bene JD (2004) Mol Phys 102:2563–2574CrossRefGoogle Scholar
  16. 16.
    Sanz P, Mó O, Yáñez M, Elguero J (2008) Chem Eur J 14:4225–4232CrossRefPubMedGoogle Scholar
  17. 17.
    Romero-Fernandez MP, Avalos M, Babiano R, Cintas P, Jimenez JL, Palacios JC (2016) Tetrahedron 72:95–104CrossRefGoogle Scholar
  18. 18.
    Guevara-Vela JM, Romero-Montalvo E, Costales A, Pendas AM, Rocha-Rinza T (2016) Phys Chem Chem Phys 18:26383–26390CrossRefPubMedGoogle Scholar
  19. 19.
    Guevara-Vela JM, Romero-Montalvo E, del Rio-Lima A, Martin Pendas A, Hernandez-Rodriguez M, Rinza TR (2017) Chem Eur J 23:16605–16611CrossRefPubMedGoogle Scholar
  20. 20.
    Tama R, Mó O, Yáñez M, Montero-Campillo MM (2017) Theor Chem Acc 136:36CrossRefGoogle Scholar
  21. 21.
    Montero-Campillo MM, Sanz P, Mó O, Yáñez M, Alkorta I, Elguero J (2018) Phys Chem Chem Phys 20:2413–2420CrossRefPubMedGoogle Scholar
  22. 22.
    Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:84108CrossRefGoogle Scholar
  23. 23.
    Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon Press, OxfordGoogle Scholar
  24. 24.
    Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  25. 25.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  26. 26.
    Wiberg KB, Schleyer PV, Streitwieser A (1996) Can J Chem 74:892–900CrossRefGoogle Scholar
  27. 27.
    Savin A, Nesper R, Wengert S, Fäsler TF (1997) Angew Chem Int Ed Engl 36:1808–1832CrossRefGoogle Scholar
  28. 28.
    Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang WT (2011) J Chem Theory Comput 7:625–632CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Torvisco A, Ruhlandt-Senge K (2013) Top Organomet Chem 45:1–28CrossRefGoogle Scholar
  30. 30.
    Montero-Campillo MM, Mó O, Yáñez M, Alkorta I, Elguero J (2018) Chem Phys Chem.  https://doi.org/10.1002/cphc.201800292 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Química, Módulo 13, Facultad de CienciasUniversidad Autónoma de Madrid, UAM-CSICMadridSpain
  2. 2.Instituto de Química Médica, IQM-CSICMadridSpain

Personalised recommendations