Conceptual DFT study of the local chemical reactivity of the dilysyldipyrrolones A and B intermediate melanoidins

Regular Article
  • 34 Downloads

Abstract

This computational study assessed 11 density functionals related to Def2TZVP basis sets, namely CAM-B3LYP, LC-\(\omega \)PBE, M11, M11L, MN12L, MN12SX, N12, N12SX, \(\omega \)B97, \(\omega \)B97X, and \(\omega \)B97XD, and the SMD solvation model for calculating the molecular properties and structures of the intermediate melanoidin pigments, dilysyldipyrrolone A (XL-W1) and dilysyldipyrrolone B (XL-W2). The global and local chemical reactivity descriptors for the systems were calculated via conceptual density functional theory (DFT). The active sites applicable to nucleophilic, electrophilic, and radical attacks were chosen by connecting them with Fukui function indices, electrophilic Parr functions, and condensed dual descriptor \(\varDelta {f}({\mathbf {r}})\) over the atomic sites. The predicted maximum absorption wavelength obtained directly from the HOMO–LUMO was more accurate relative to the experimental values of the MN12SX and N12SX density functionals than those obtained with TDDFT calculations. This study found the MN12SX and N12SX density functionals to be most appropriate for predicting the chemical reactivity of the molecules under study.

Keywords

Melanoidins XL-W1 XL-W2 Conceptual DFT Chemical reactivity Dual descriptor Parr function Maximum absorption wavelength 

Notes

Acknowledgements

This work was partially supported by CIMAV, SC, and Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico) through Grant 219566-2014 for Basic Science Research. Daniel Glossman-Mitnik conducted this work while being a Visiting Lecturer at the University of the Balearic Islands, the support from which is gratefully acknowledged. This work was cofunded by the Ministerio de Economía y Competitividad (MINECO) and the European Fund for Regional Development (FEDER) (CTQ2014-55835-R).

Supplementary material

214_2018_2244_MOESM1_ESM.pdf (132 kb)
Supplementary material 1 (pdf 131 KB)

References

  1. 1.
    Argirova MD (2005) J Agric Food Chem 53(4):1210CrossRefGoogle Scholar
  2. 2.
    Glossman-Mitnik D (2013) Chem Cent J 7:155CrossRefGoogle Scholar
  3. 3.
    Salgado-Morán G, Ruiz-Nieto S, Gerli-Candia L, Flores-Holguín N, Favila-Pérez A, Glossman-Mitnik D (2013) J Mol Model 19:3507CrossRefGoogle Scholar
  4. 4.
    Martínez-Araya JI, Salgado-Morán G, Glossman-Mitnik D (2013) J Phys Chem B 117(21):6639CrossRefGoogle Scholar
  5. 5.
    Glossman-Mitnik D (2013) Proc Comput Sci 18:816CrossRefGoogle Scholar
  6. 6.
    Martínez-Araya JI, Salgado-Morán G, Glossman-Mitnik D (2013) J Chem 2013(850297):8Google Scholar
  7. 7.
    Cervantes-Navarro F, Glossman-Mitnik D (2013) J Theor Comput Chem 12(3):1350013CrossRefGoogle Scholar
  8. 8.
    Alvarado-González M, Flores-Holguín N, Glossman-Mitnik D (2013) Int J Photoenergy 2013(424620):8Google Scholar
  9. 9.
    Glossman-Mitnik D (2014) Eur Int J Sci Technol 3(9):195Google Scholar
  10. 10.
    Glossman-Mitnik D (2014) J Mol Model 20(7):2316CrossRefGoogle Scholar
  11. 11.
    Glossman-Mitnik D (2014) In: Tiwari A, Turner AP (eds) Biosensors nanotechnology. Wiley, Hoboken, pp 201–238Google Scholar
  12. 12.
    Glossman-Mitnik D (2014) In: Seminario JM (ed) Design and applications of nanomaterials for sensors. Springer, Dordrecht, pp 359–402Google Scholar
  13. 13.
    Martínez-Araya JI, Grand A, Glossman-Mitnik D (2015) Phys Chem Chem Phys 17:29764CrossRefGoogle Scholar
  14. 14.
    Soto-Rojo R, Baldenebro-López J, Glossman-Mitnik D (2015) Phys Chem Chem Phys 17:14122CrossRefGoogle Scholar
  15. 15.
    Martínez-Araya JI, Glossman-Mitnik D (2015) Chem Phys Lett 618:162CrossRefGoogle Scholar
  16. 16.
    Frau J, Muñoz F, Glossman-Mitnik D (2016) Chem Inform 2(2):7CrossRefGoogle Scholar
  17. 17.
    Frau J, Muñoz F, Glossman-Mitnik D (2016) Molecules 21(12):1650CrossRefGoogle Scholar
  18. 18.
    Frau J, Muñoz F, Glossman-Mitnik D (2016) SDRP J Comput Chem Mol Model 1(2):3Google Scholar
  19. 19.
    Mendoza-Huízar LH, Salgado-Morán G, Ramírez-Tagle R, Glossman-Mitnik D (2016) Comput Theor Chem 1075:54CrossRefGoogle Scholar
  20. 20.
    Frau J, Muñoz F, Glossman-Mitnik D (2017) Res J Chem Sci 7(5):46Google Scholar
  21. 21.
    Frau J, Glossman-Mitnik D (2017) Br J Appl Sci Technol 21(1):32795CrossRefGoogle Scholar
  22. 22.
    Frau J, Muñoz F, Glossman-Mitnik D (2017) Química Nova 40(4):402Google Scholar
  23. 23.
    Frau J, Glossman-Mitnik D (2017) Res J Life Sci Bioinform Pharm Chem Sci 2(6):103Google Scholar
  24. 24.
    Frau J, Glossman-Mitnik D (2017) MOJ Drug Des Dev Ther 1(1):00003Google Scholar
  25. 25.
    Frau J, Glossman-Mitnik D (2017) ChemXpress 10(1):120Google Scholar
  26. 26.
    Frau J, Glossman-Mitnik D (2017) Front Chem 5:16CrossRefGoogle Scholar
  27. 27.
    Sastre S, Frau J, Glossman-Mitnik D (2017) Molecules 22(3):458CrossRefGoogle Scholar
  28. 28.
    Frau J, Ramis R, Glossman-Mitnik D (2017) Theor Chem Acc 136(4):39CrossRefGoogle Scholar
  29. 29.
    Frau J, Muñoz F, Glossman-Mitnik D (2017) J Theor Comput Chem 16(1):1750006CrossRefGoogle Scholar
  30. 30.
    Frau J, Glossman-Mitnik D (2017) Molecules 22(1):226CrossRefGoogle Scholar
  31. 31.
    Frau J, Glossman-Mitnik D (2017) Chem Cent J 11:8CrossRefGoogle Scholar
  32. 32.
    Frau J, Hernández-Haro N, Glossman-Mitnik D (2017) Chem Phys Lett 671:138CrossRefGoogle Scholar
  33. 33.
    Nursten H (2005) The Maillard reaction–chemistry, biochemistry and implications. The Royal Society of Chemistry, CambridgeGoogle Scholar
  34. 34.
    Parr R, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  35. 35.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793CrossRefGoogle Scholar
  36. 36.
    Toro-Labbé A (2007) Theoretical aspects of chemical reactivity. Elsevier Science, AmsterdamGoogle Scholar
  37. 37.
    Chattaraj P (2009) Chemical reactivity theory–a density functional view. CRC Press, Taylor & Francis Group, Boca RatonCrossRefGoogle Scholar
  38. 38.
    Sakamoto J, Takenaka M, Ono H, Murata M (2009) Biosci Biotechnol Biochem 73(9):2065CrossRefGoogle Scholar
  39. 39.
    Gledhill JD, De Proft F, Tozer DJ (2016) J Chem Theory Comput 12(10):4879CrossRefGoogle Scholar
  40. 40.
    Jacquemin D, Moore B, Planchat A, Adamo C, Autschbach J (2014) J Chem Theory Comput 10(4):1677CrossRefGoogle Scholar
  41. 41.
    Parr R, Yang W (1984) J Am Chem Soc 106:4049CrossRefGoogle Scholar
  42. 42.
    Parr R, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922CrossRefGoogle Scholar
  43. 43.
    Gázquez J, Cedillo A, Vela A (2007) J Phys Chem A 111(10):1966CrossRefGoogle Scholar
  44. 44.
    Chattaraj P, Chakraborty A, Giri S (2009) J Phys Chem A 113(37):10068CrossRefGoogle Scholar
  45. 45.
    Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205CrossRefGoogle Scholar
  46. 46.
    Morell C, Grand A, Toro-Labbé A (2006) Chem Phys Lett 425:342CrossRefGoogle Scholar
  47. 47.
    Domingo LR, Pérez P, Sáez J (2013) RSC Adv 3:1486CrossRefGoogle Scholar
  48. 48.
    Chamorro E, Pérez P, Domingo LR (2013) Chem Phys Lett 582:141CrossRefGoogle Scholar
  49. 49.
    Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Molecules 21:748CrossRefGoogle Scholar
  50. 50.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, CheesemanJR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H,Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G,Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09Revision D.01. Gaussian Inc., Wallingford CTGoogle Scholar
  51. 51.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297CrossRefGoogle Scholar
  52. 52.
    Weigend F (2006) Phys Chem Chem Phys 8:1057CrossRefGoogle Scholar
  53. 53.
    Marenich A, Cramer C, Truhlar D (2009) J Phys Chem B 113:6378CrossRefGoogle Scholar
  54. 54.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393(1–3):51CrossRefGoogle Scholar
  55. 55.
    Henderson TM, Izmaylov AF, Scalmani G, Scuseria GE (2009) J Chem Phys 131(4):044108CrossRefGoogle Scholar
  56. 56.
    Peverati R, Truhlar DG (2011) J Phys Chem Lett 2(21):2810CrossRefGoogle Scholar
  57. 57.
    Peverati R, Truhlar DG (2012) J Phys Chem Lett 3(1):117CrossRefGoogle Scholar
  58. 58.
    Peverati R, Truhlar DG (2012) Phys Chem Chem Phys 14(38):13171CrossRefGoogle Scholar
  59. 59.
    Peverati R, Truhlar DG (2012) Phys Chem Chem Phys 14(47):16187CrossRefGoogle Scholar
  60. 60.
    Peverati R, Truhlar DG (2012) J Chem Theory Comput 8(7):2310CrossRefGoogle Scholar
  61. 61.
    Chai J, Head-Gordon M (2008) J Chem Phys 128:084106CrossRefGoogle Scholar
  62. 62.
    Chai J, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615CrossRefGoogle Scholar
  63. 63.
    Halgren TA (1996) J Comput Chem 17(5–6):490CrossRefGoogle Scholar
  64. 64.
    Halgren TA (1996) J Comput Chem 17(5–6):520CrossRefGoogle Scholar
  65. 65.
    Halgren TA (1999) J Comput Chem 20(7):720CrossRefGoogle Scholar
  66. 66.
    Halgren TA, Nachbar RB (1996) J Comput Chem 17(5–6):587Google Scholar
  67. 67.
    Halgren TA (1996) J Comput Chem 17(5–6):616CrossRefGoogle Scholar
  68. 68.
    Egger DA, Weissman S, Refaely-Abramson S, Sharifzadeh S, Dauth M, Baer R, Kümmel S, Neaton JB, Zojer E, Kronik L (2014) J Chem Theory Comput 10(5):1934CrossRefGoogle Scholar
  69. 69.
    Foster ME, Wong BM (2012) J Chem Theory Comput 8(8):2682CrossRefGoogle Scholar
  70. 70.
    Foster ME, Azoulay JD, Wong BM, Allendorf MD (2014) Chem Sci 5(5):2081CrossRefGoogle Scholar
  71. 71.
    Karolewski A, Stein T, Baer R, Kümmel S (2011) J Chem Phys 134(15):151101CrossRefGoogle Scholar
  72. 72.
    Karolewski A, Kronik L, Kümmel S (2013) J Chem Phys 138(20):204115CrossRefGoogle Scholar
  73. 73.
    Koppen JV, Hapka M, Szczeniak MM, Chalasinski G (2012) J Chem Phys 137(11):114302CrossRefGoogle Scholar
  74. 74.
    Kronik L, Stein T, Refaely-Abramson S, Baer R (2012) J Chem Theory Comput 8(5):1515CrossRefGoogle Scholar
  75. 75.
    Kuritz N, Stein T, Baer R, Kronik L (2011) J Chem Theory Comput 7(8):2408CrossRefGoogle Scholar
  76. 76.
    Lima IT, Prado AS, Martins JBL, de Oliveira Neto PH, Ceschin AM, da Cunha WF, da Silva Filho DA (2016) J Phys Chem A 120(27):4944CrossRefGoogle Scholar
  77. 77.
    Manna AK, Lee MH, McMahon KL, Dunietz BD (2015) J Chem Theory Comput 11(3):1110CrossRefGoogle Scholar
  78. 78.
    Moore B II, Autschbach J (2013) J Chem Theory Comput 9(11):4991CrossRefGoogle Scholar
  79. 79.
    Niskanen M, Hukka TI (2014) Phys Chem Chem Phys 16(26):13294CrossRefGoogle Scholar
  80. 80.
    Pereira TL, Leal LA, da Cunha WF, Timóteo de Sousa Júnior R, Ribeiro Junior LA, Antonio da Silva Filho D (2017) J Mol Model 23(3):71CrossRefGoogle Scholar
  81. 81.
    Phillips H, Zheng S, Hyla A, Laine R, Goodson T III, Geva E, Dunietz BD (2012) J Phys Chem A 116(4):1137CrossRefGoogle Scholar
  82. 82.
    Phillips H, Geva E, Dunietz BD (2012) J Chem Theory Comput 8(8):2661CrossRefGoogle Scholar
  83. 83.
    Refaely-Abramson S, Baer R, Kronik L (2011) Phys Rev B 84(7):075144CrossRefGoogle Scholar
  84. 84.
    Stein T, Kronik L, Baer R (2009) J Chem Phys 131(24):244119CrossRefGoogle Scholar
  85. 85.
    Stein T, Kronik L, Baer R (2009) J Am Chem Soc 131(8):2818CrossRefGoogle Scholar
  86. 86.
    Sun H, Autschbach J (2014) J Chem Theory Comput 10(3):1035CrossRefGoogle Scholar
  87. 87.
    Becke AD (2016) J Chem Phys 145(19):194107CrossRefGoogle Scholar
  88. 88.
    Baerends EJ, Gritsenko OV, van Meer R (2013) Phys Chem Chem Phys 15(39):16408CrossRefGoogle Scholar
  89. 89.
    van Meer R, Gritsenko OV, Baerends EJ (2014) J Chem Theory Comput 10(10):4432CrossRefGoogle Scholar
  90. 90.
    Zhurko G, Zhurko D (2012) Chemcraft program Revision 1.6. In: Zhurko GA, http://www.chemcraft.com/. United States. Accessed 15 Nov 2017

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departament de QuímicaUniversitat de les Illes BalearsPalma de MallorcaSpain
  2. 2.Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y EnergíaCentro de Investigación en Materiales AvanzadosChihuahuaMexico

Personalised recommendations