Low-energy stereodynamics in the ion–molecule reactions D+ + D2/HD and H+ + H2/HD: reagent vibrational excitation effect and mass factor effect

Regular Article
  • 50 Downloads

Abstract

The low-energy chemical stereodynamics of these ion–molecule reactions D+ + D2 → D2 + D+, D+ + HD → DH + D+/D2 + H+, H+ + HD → H2 + D+/HD + H+ and H+ + H2 → H2 + H+ has been investigated by performing the quasi-classical trajectory calculations on the ground electronic state potential energy surface (11A′ PES). The polarization-dependent differential cross sections and the probability distributions of P(θ r ) and P(ϕ r ) have been calculated, compared and discussed within the center-of-mass frame and at the low collision energy of 100 meV. The calculation results indicate that the product scattering and the polarization of the product rotational angular momentum are sensitive to the reactant vibrational quantum number. Such sensitivity increases with the increasing value of mass factor. Moreover, the products from the reaction H+ + HD → HD + H+ show quite different scattering and polarization behaviors with reagent vibration excitation.

Keywords

Chemical stereodynamics Quasi-classical trajectory theory method Polarization-dependent differential cross section Angle distribution Reagent vibration effect Mass factor effect 

Notes

Acknowledgements

This work is supported by the Natural Science Foundation of Shandong Province of China under the Grant No. ZR2014AM025.

References

  1. 1.
    Tennyson J, Miller S (1994) H3 + from first principles to jupiter. Contemp Phys 35:105–116CrossRefGoogle Scholar
  2. 2.
    Jambrina PG, Aoiz FJ, Bulut N, Smith SC, Balint-Kurti GG, Hankel M (2010) The dynamics of the H++ D-2 reaction: a comparison of quantum mechanical wavepacket, quasi-classical and statistical-quasi-classical results. Phys Chem Chem Phys 12:1102–1115CrossRefGoogle Scholar
  3. 3.
    Wrede E, Schnieder L, Seekamp-Schnieder K, Niederjohann B, Welge KH (2005) Reactive scattering of Rydberg atoms: H*+D-2 → HD + D*. Phys Chem Chem Phys 7:1577–1582CrossRefGoogle Scholar
  4. 4.
    Li B, Han K-L (2008) The three-dimensional nonadiabatic dynamics calculation of DH(2)(+) and HD(2)(+) systems by using the trajectory surface hopping method based on the Zhu–Nakamura theory. J Chem Phys 128:114116CrossRefGoogle Scholar
  5. 5.
    Kamisaka H, Bian W, Nobusada K, Nakamura H (2002) Accurate quantum dynamics of electronically nonadiabatic chemical reactions in the DH2+ system. J Chem Phys 116:654–665CrossRefGoogle Scholar
  6. 6.
    Chu TS, Han KL (2005) Nonadiabatic time-dependent wave packet study of the D++H-2 reaction system. J Phys Chem A 109:2050–2056CrossRefGoogle Scholar
  7. 7.
    Chu T-S, Han K-L (2008) Effect of Coriolis coupling in chemical reaction dynamics. Phys Chem Chem Phys 10:2431–2441CrossRefGoogle Scholar
  8. 8.
    Chu T-S, Varandas AJC, Han K-L (2009) Nonadiabatic effects in D++ H-2 and H++ D-2. Chem Phys Lett 471:222–228CrossRefGoogle Scholar
  9. 9.
    Chu T-S, Zhang Y, Han K-L (2006) The time-dependent quantum wave packet approach to the electronically nonadiabatic processes in chemical reactions. Int Rev Phys Chem 25:201–235CrossRefGoogle Scholar
  10. 10.
    Li B, Chu T-S, Han K-L (2010) Non-Born-Oppenheimer dynamics calculations using the coherent switching with decay of mixing method. J Comput Chem 31:362–370CrossRefGoogle Scholar
  11. 11.
    Lu RF, Chu TS, Han KL (2005) Quantum wave packet study of the H+ plus D-2 reaction on diabatic potential energy surfaces. J Phys Chem A 109:6683–6688CrossRefGoogle Scholar
  12. 12.
    Amaran S, Kumar S (2007) Vibrational inelastic and charge transfer processes in H(+) + H(2) system: an ab initio study. J Chem Phys 127:214304CrossRefGoogle Scholar
  13. 13.
    Carmona-Novillo E, Gonzalez-Lezana T, Roncero O, Honvault P, Launay J-M, Bulut N et al (2008) On the dynamics of the H(+) + D(2)(v = 0, j = 0) → HD + D(+) reaction: a comparison between theory and experiment. J Chem Phys 128:014304CrossRefGoogle Scholar
  14. 14.
    Gonzalez-Lezana T, Aguado A, Paniagua M, Roncero O (2005) Quantum approaches for the insertion dynamics of the H++D-2 and D++H-2 reactive collisions. J ChemPhys 123:194309Google Scholar
  15. 15.
    Gonzalez-Lezana T, Honvault P, Jambrina PG, Aoiz FJ, Launay JM (2009) Effects of the rotational excitation of D-2 and of the potential energy surface on the H++D-2 → HD + D+ reaction. J Chem Phys 131:044315CrossRefGoogle Scholar
  16. 16.
    Hankel M (2011) Coriolis coupling effects in the dynamics of deep well reactions: application to the H++ D-2 reaction. Phys Chem Chem Phys 13:7948–7960CrossRefGoogle Scholar
  17. 17.
    Jambrina PG, Alvarino JM, Gerlich D, Hankel M, Herrero VJ, Saez-Rabanos V et al (2012) Dynamics of the D++H-2 and H++D-2 reactions: a detailed comparison between theory and experiment. Phys Chem Chem Phys 14:3346–3359CrossRefGoogle Scholar
  18. 18.
    Zhang W, Li Y, Xu X, Chen M (2010) Isotope effects on the dynamics in the ion-diatomic collisions of D+, H+ with H-2 and D-2 molecules. Chem Phys 367:115–119CrossRefGoogle Scholar
  19. 19.
    Zhang C, Zhang W, Chen M (2009) Theoretical Studies Of Stereodynamics For The H+ + H-2 (nu = 0–3, j = 0) → H-2 + H + reaction. J Theor Comput Chem 8:403–415CrossRefGoogle Scholar
  20. 20.
    Han KL, He GZ, Lou NQ (1996) Effect of location of energy barrier on the product alignment of reaction A + BC. J Chem Phy 105:8699–8704CrossRefGoogle Scholar
  21. 21.
    Wang ML, Han KL, He GZ (1998) Product rotational polarization in the photoinitiated bimolecular reaction A + BC → AB + C on attractive, mixed and repulsive surfaces. J Chem Phy 109:5446–5454CrossRefGoogle Scholar
  22. 22.
    Wang ML, Han KL, He GZ (1998) Product rotational polarization in photo-initiated bimolecular reactions A + BC: dependence on the character of the potential energy surface for different mass combinations. J Phys Chem A 102:10204–10210CrossRefGoogle Scholar
  23. 23.
    Alexander AJ, Aoiz FJ, Bañares L, Brouard M, Short J, Simons JP (1997) Stereodynamics of the Reaction O(1D2) + H2(v = 0) → OH(X2Πi;v = 0, N, f) + H: state-Resolved Linear and Rotational Angular Momentum Distributions. J Phys Chem A 101:7544–7557CrossRefGoogle Scholar
  24. 24.
    Shaferray NE, Orrewing AJ, Zare RN (1995) Beyond state-to-state differential cross-sections—determination of product polarization in photoinitiated bimolecular reactions. J Phys Chem 99:7591–7603CrossRefGoogle Scholar
  25. 25.
    Han KL (1997) Optical preparation of oriented and aligned reagents. Phys Rev A 56:4992–4995CrossRefGoogle Scholar
  26. 26.
    Wang ML, Han KL, Cong SL, He GZ, Lou NQ (1998) Rotational alignment from the Sr(P-3(J)) + CH2ClI chemiluminescent reaction. Chem Phys 238:481–485CrossRefGoogle Scholar
  27. 27.
    Wang ML, Han KL, Zhan JP, Huang JH, He GZ (1998) Rotational alignment from the reactions Sr(P-3(j)) + CCl4 and CHCl3. Chem Phys 236:387–392CrossRefGoogle Scholar
  28. 28.
    Wang ML, Han KL, Zhan JP, Wu VWK, He GZ, Lou NQ (1997) Reaction dynamics of the Sr(P-3(J))+RI->SrI + R (R = CH3, CH3CH2) systems: rotational alignment, electronic state branching ratio and vibrational state population of products. Chem Phys 278:307–312Google Scholar
  29. 29.
    Zhan JP, Yang HP, Han KL, Deng WQ, He GZ, Lou NQ (1997) Rotational alignment of products from the NOCl + Ca chemiluminescent reaction. J Phys Chem A 101:7486–7489CrossRefGoogle Scholar
  30. 30.
    Zhan JP, Yang HP, Han KL, Wang ML, Deng WQ, He GZ et al (1998) Rotational alignment of products from NOCl + Sr chemiluminescent reaction. J Chem Phys. 109:1819–1823CrossRefGoogle Scholar
  31. 31.
    Zhang L, Chen MD, Wang ML, Han KL (2000) Product rotational polarization: stereodynamics of the reaction Cl(P-2(3/2)) + CD4(v = 0, j = 0)-> DCl(v(‘) = 0, j ‘= 1) + CD3. J Chem Phys 112:3710–3716CrossRefGoogle Scholar
  32. 32.
    Zhang X, Han KL (2006) High-order symplectic integration in quasi-classical trajectory simulation: case study for 0(D-1) + H-2. Int J Quant Chem 106:1815–1819CrossRefGoogle Scholar
  33. 33.
    Ju L-P, Han K-L, Zhang JZH (2009) Global Dynamics and Transition State Theories: comparative Study of Reaction Rate Constants for Gas-Phase Chemical Reactions. J Comput Chem 30:305–316CrossRefGoogle Scholar
  34. 34.
    Chen MD, Han KL, Lou NQ (2003) Theoretical study of stereodynamics for the reactions Cl + H-2/HD/D-2. J Chem Phys 118:4463–4470CrossRefGoogle Scholar
  35. 35.
    Chen MD, Han KL, Lou NQ (2002) Vector correlation in the H + D-2 reaction and its isotopic variants: isotope effect on stereodynamics. Chem Phys Lett 357:483–490CrossRefGoogle Scholar
  36. 36.
    Chen MD, Tang BY, Han KL, Lou NQ (2001) Quasi-classical trajectory study of the DCl/HCl product branching ratios for the Cl + HD reaction on BW2 potential energy surface. Chem Phys Lett 337:349–354CrossRefGoogle Scholar
  37. 37.
    Chen MD, Wang ML, Han KL, Ding SL (1999) Theoretical studies of scattering-angle resolved product rotational alignment for the reaction of Cl with vibrationally excited methane. Chem Phys Lett 301:303–308CrossRefGoogle Scholar
  38. 38.
    Li RJ, Han KL, Li FE, Lu RC, He GZ, Lou NQ (1994) ROTATIONAL ALIGNMENT OF PRODUCT MOLECULES FROM THE REACTIONS SR + CH3BR, C2H5BR, N-C3H7BR, I-C3H7BR BY MEANS OF PLIF. Chem Phys Lett 220:281–285CrossRefGoogle Scholar
  39. 39.
    Cai MQ, Zhang L, Tang BY, Chen MD, Yang GW, Han KL (2000) Quasiclassical calculation of the chemical reaction Sr plus HF. Chem Phys 255:283–289CrossRefGoogle Scholar
  40. 40.
    Liu YF, Meng HY, Han KL (2005) Theoretical study of the stereodynamics of the reaction Cl + C3H8 → C3H7 + HCl. Chem Phys 309:223–230CrossRefGoogle Scholar
  41. 41.
    Fan GH, Han KL, He GZ (2013) Time-dependent Density Functional-based Tight-bind Method Efficiently Implemented with OpenMP Parallel and GPU Acceleration. Chin J Chem Phys 26:635–645CrossRefGoogle Scholar
  42. 42.
    Han KL, Zhang L, Xu DL, He GZ, Lou NQ (2001) Experimental and theoretical studies of the reactions of excited calcium atoms with ethyl and n-propyl bromides. J Phys Chem A 105:2956–2960CrossRefGoogle Scholar
  43. 43.
    Alberti M, Gimenez X, Aguilar A, Urena AG (1995) Angular momenta correlation in kinematically constrained reactions: application to the BA + HI- BAI + H system. Mol Phys 85:949–963CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Pathogenic Biology, Medical CollegeQingdao UniversityQingdaoChina

Personalised recommendations