The isotope effect on charge transport for bithiophene and di(n-hexyl)-bithiophene: impacts of deuteration position, deuteration number and side chain substitution position

  • Yuqian JiangEmail author
  • Zhigang ShuaiEmail author
  • Minghua Liu
Regular Article


The isotope effect on charge transport had been proposed to judge the transport mechanism in organic semiconductors. By using quantum nuclear tunneling model, we found that isotopic substitution could reduce mobility. For deeply understanding the impacts of the isotopic substitution position, substitution number and even molecular structure on the isotope effect, we take 2,2′-bithiophene and its dihexyl substitutions as examples to study the deuteration effect on hole transport. For deuterated–bithiophene, the isotope effect is linearly increasing with deuteration number. However, when the number is identical, deuteration on 5(5′)-position of thiophene will lead to stronger isotope effect than 3(3′)- or 4(4′)-position, since the reorganization energy contributed by 5-position hydrogen atoms is larger. For di(n-hexyl)-bithiophene isomers, 5,5′-dihexyl substitution also exhibits the strongest isotope effect after hexyl-deuteration or all-deuteration, due to the larger reorganization energy contributed by hexyl group in 5(5′)-position rather than 3(3′)- and 4(4′)-positions. Our calculation indicates that for identical system, the isotope effect is closely related to the number and position of isotopic atoms, while for isomers, the isotope effect is also related to the molecular configuration, such as the position of side chain substitution.


Charge transport Nuclear tunneling Isotope effect Deuteration Bithiophene 



This work is supported by National Natural Science Foundation of China (Grant No. 21603043).


  1. 1.
    Yuan YB, Giri G, Ayzner AL, Zoombelt AP, Mannsfeld SCB, Chen JH, Nordlund D, Toney MF, Huang JS, Bao ZN (2014) Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat commun 5:3005–3013Google Scholar
  2. 2.
    Gélinas S, Rao A, Kumar A, Smith SL, Chin AW, Clark J, van der Poll TS, Bazan GC, Friend RH (2014) Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343:512–516CrossRefGoogle Scholar
  3. 3.
    Zhang L, Fonari A, Liu Y, Hoyt ALM, Lee H, Granger D, Parkin S, Russell TP, Anthony JE, Bredas JL, Coropceanu V, Briseno AL (2014) Bistetracene: an air-stable, high-mobility organic semiconductor with extended conjugation. J Am Chem Soc 136:9248–9251CrossRefGoogle Scholar
  4. 4.
    Zhang Q, Li J, Shizu K, Huang S, Hirata S, Miyazaki H, Adachi C (2012) Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J Am Chem Soc 134:14706–14709CrossRefGoogle Scholar
  5. 5.
    Deng CM, Niu YL, Peng Q, Shuai ZG (2010) Electronic structures and spectroscopic properties of group-14 metalloles MPh6 (M = Si, Ge, Sn). Acta Phys Chim Sin 26:1051–1058Google Scholar
  6. 6.
    Shuai ZG, Xu W, Peng Q, Geng H (2013) From electronic excited state theory to the property predictions of organic optoelectronic materials. Sci China Chem 56:1277–1284CrossRefGoogle Scholar
  7. 7.
    Shi QH, Peng Q, Sun SR, Shuai ZG (2013) Vibration correlation function investigation on the phosphorescence quantum efficiency and spectrum for blue phosphorescent Ir(III) complex. Acta Chim Sin 71:884–891CrossRefGoogle Scholar
  8. 8.
    Chen HY, Chao I (2006) Toward the rational design of functionalized pentacenes: reduction of the impact of functionalization on the reorganization energy. ChemPhysChem 7:2003–2007CrossRefGoogle Scholar
  9. 9.
    Chai S, Wen SH, Huang JD, Han KL (2011) Density functional theory study on electron and hole transport properties of organic pentacene derivatives with electron-withdrawing substituent. J Comput Chem 32:3218–3225CrossRefGoogle Scholar
  10. 10.
    Kobayashi H, Kobayashi N, Hosoi S, Koshitani N, Murakami D, Shirasawa R, Kudo Y, Hobara D, Tokita Y, Itabashi M (2013) Hopping and band mobilities of pentacene, rubrene, and 2,7-dioctyl[1] benzothieno [3,2-b][1] benzothiophene (C8-BTBT) from first principle calculations. J Chem Phys 139:014707–014714CrossRefGoogle Scholar
  11. 11.
    Deng WQ, Goddard WA (2004) Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations. J Phys Chem B 108:8614–8621CrossRefGoogle Scholar
  12. 12.
    Tang L, Long MQ, Wang D, Shuai ZG (2009) The role of acoustic phonon scattering in charge transport in organic semiconductors: a first-principles deformation-potential study. Sci China, Ser B: Chem 52:1646–1652CrossRefGoogle Scholar
  13. 13.
    Cheng YC, Silbey RJ, da Silva Filho DA, Calbert JP, Cornil J, Brédas JL (2003) Three-dimensional band structure and bandlike mobility in oligoacene single crystals: a theoretical investigation. J Chem Phys 118:3764–3774CrossRefGoogle Scholar
  14. 14.
    Hannewald K, Bobbert P (2005) Ab-initio theory of charge transport in organic crystals. Phys Semi Part B 772:1101–1104Google Scholar
  15. 15.
    Troisi A (2007) Prediction of the absolute charge mobility of molecular semiconductors: the case of rubrene. Adv Mater 19:2000–2004CrossRefGoogle Scholar
  16. 16.
    Troisi A, Orlandi G (2006) Charge-transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder. Phys Rev Lett 96:086601–086604CrossRefGoogle Scholar
  17. 17.
    Troisi A, Orlandi G (2006) Dynamics of the intermolecular transfer integral in crystalline organic semiconductors. J Phys Chem A 110:4065–4070CrossRefGoogle Scholar
  18. 18.
    Wang LJ, Peng Q, Li QK, Shuai ZG (2007) Roles of inter- and intramolecular vibrations and band-hopping crossover in the charge transport in naphthalene crystal. J Chem Phys 127:044506–044514CrossRefGoogle Scholar
  19. 19.
    Jiang YQ, Xu H, Zhao N, Peng Q, Shuai ZG (2014) Spectral signature of intrachain and interchain polarons in donor-acceptor copolymers. Acta Chim Sin 72:201–207CrossRefGoogle Scholar
  20. 20.
    Lee B, Chen Y, Fu D, Yi H, Czelen K, Najafov H, Podzorov V (2013) Trap healing and ultralow-noise Hall effect at the surface of organic semiconductors. Nat Mater 12:1125–1129CrossRefGoogle Scholar
  21. 21.
    Sakanoue T, Sirringhaus H (2010) Band-like temperature dependence of mobility in a solution-processed organic semiconductor. Nat Mater 9:736–740CrossRefGoogle Scholar
  22. 22.
    Nan GJ, Yang XD, Wang LJ, Shuai ZG, Zhao Y (2009) Nuclear tunneling effects of charge transport in rubrene, tetracene, and pentacene. Phys Rev B 79:115203–115211CrossRefGoogle Scholar
  23. 23.
    Shuai ZG, Geng H, Xu W, Liao Y, Andre JM (2014) From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation. Chem Soc Rev 43:2662–2679CrossRefGoogle Scholar
  24. 24.
    Geng H, Peng Q, Wang LJ, Li H, Liao Y, Ma Z, Shuai ZG (2012) Toward quantitative prediction of charge mobility in organic semiconductors: tunneling enabled hopping model. Adv Mater 24:3568–3572CrossRefGoogle Scholar
  25. 25.
    Gorham-Bergeron E, Emin D (1977) Phonon-assisted hopping due to interaction with both acoustical and optical phonons. Phys Rev B 15:3667–3680CrossRefGoogle Scholar
  26. 26.
    Ulstrup J, Jortner J (1975) The effect of intramolecular quantum modes on free energy relationships for electron transfer reactions. J Chem Phys 63:4358–4368CrossRefGoogle Scholar
  27. 27.
    Asadi K, Kronemeijer AJ, Cramer T, Jan Anton Koster L, Blom PWM, de Leeuw DM (2013) Polaron hopping mediated by nuclear tunnelling in semiconducting polymers at high carrier density. Nat commun 4:1710–1717CrossRefGoogle Scholar
  28. 28.
    Yuen JD, Menon R, Coates NE, Namdas EB, Cho S, Hannahs ST, Moses D, Heeger AJ (2009) Nonlinear transport in semiconducting polymers at high carrier densities. Nat Mater 8:572–575CrossRefGoogle Scholar
  29. 29.
    Kronemeijer AJ, Huisman EH, Katsouras I, van Hal PA, Geuns TCT, Blom PWM, van der Molen SJ, de Leeuw DM (2010) Universal scaling in highly doped conducting polymer films. Phys Rev Lett 105:156604–156607CrossRefGoogle Scholar
  30. 30.
    Rodin AS, Fogler MM (2010) Apparent Power-Law Behavior of Conductance in Disordered Quasi-One-Dimensional Systems. Phys Rev Lett 105:106801–106804CrossRefGoogle Scholar
  31. 31.
    Jiang YQ, Geng H, Shi W, Peng Q, Zheng XY, Shuai ZG (2014) Theoretical prediction of isotope effects on charge transport in organic semiconductors. J Phys Chem Lett 5:2267–2273CrossRefGoogle Scholar
  32. 32.
    Jiang YQ, Peng Q, Geng H, Ma H, Shuai ZG (2015) Negative isotope effect for charge transport in acenes and derivatives: a theoretical conclusion. Phys Chem Chem Phys 17:3273–3280CrossRefGoogle Scholar
  33. 33.
    Mey W, Sonnonstine TJ, Morel DL, Hermann AM (1973) Drift mobility of holes and electrons in perdeuterated anthracene single crystals. J Chem Phys 58:2542–2546CrossRefGoogle Scholar
  34. 34.
    Munn RW, Nicholson JR, Siebrand W, Williams DF (1970) Evidence for an isotope effect on electron drift mobilities in anthracene crystals. J Chem Phys 52:6442–6443CrossRefGoogle Scholar
  35. 35.
    Munn RW, Siebrand W (1970) Theory of charge carrier transport in aromatic hydrocarbon crystals. J Chem Phys 52:6391–6406CrossRefGoogle Scholar
  36. 36.
    Schein LB, McGhie AR (1979) Band-hopping mobility transition in naphthalene and deuterated naphthalene. Phys Rev B 20:1631–1639CrossRefGoogle Scholar
  37. 37.
    Xie W, McGarry KA, Liu F, Wu Y, Ruden PP, Douglas CJ, Frisbie CD (2013) High-mobility transistors based on single crystals of isotopically substituted rubrene-d28. J Phys Chem C 117:11522–11529CrossRefGoogle Scholar
  38. 38.
    Mannebach EM, Spalenka JW, Johnson PS, Cai Z, Himpsel FJ, Evans PG (2013) High hole mobility and thickness-dependent crystal structure in α, ω-dihexylsexithiophene single-monolayer field-effect transistors. Adv Funct Mater 23:554–564CrossRefGoogle Scholar
  39. 39.
    Facchetti A, Mushrush M, Yoon M-H, Hutchison GR, Ratner MA, Marks TJ (2004) Building blocks for n type molecular and polymeric electronics. Perfluoroalkyl-versus alkyl-functionalized oligothiophenes (nT; n = 2 − 6). Systematics of thin film microstructure, semiconductor performance, and modeling of majority charge injection in field-effect transistors. J Am Chem Soc 126:13859–13874CrossRefGoogle Scholar
  40. 40.
    Horowitz G, Garnier F, Yassar A, Hajlaoui R, Kouki F (1996) Field-effect transistor made with a sexithiophene single crystal. Adv Mater 8:52–54CrossRefGoogle Scholar
  41. 41.
    Dodabalapur A, Torsi L, Katz HE (1995) Organic transistors: two-dimensional transport and improved electrical characteristics. Science 268:270–271CrossRefGoogle Scholar
  42. 42.
    Mannsfeld SCB, Locklin J, Reese C, Roberts ME, Lovinger AJ, Bao Z (2007) Probing the Anisotropic field-effect mobility of solution-deposited dicyclohexyl-α-quaterthiophene single crystals. Adv Funct Mater 17:1617–1622CrossRefGoogle Scholar
  43. 43.
    Yang X, Wang L, Wang C, Long W, Shuai Z (2008) Influences of crystal structures and molecular sizes on the charge mobility of organic semiconductors: oligothiophenes. Chem Mater 20:3205–3211CrossRefGoogle Scholar
  44. 44.
    Navamani K, Saranya G, Kolandaivel P, Senthilkumar K (2013) Effect of structural fluctuations on charge carrier mobility in thiophene, thiazole and thiazolothiazole based oligomers. Phys Chem Chem Phys 15:17947–17961CrossRefGoogle Scholar
  45. 45.
    Duan Y-A, Geng Y, Li H-B, Tang X-D, Jin J-L, Su Z-M (2012) Theoretical study on charge transport properties of cyanovinyl-substituted oligothiophenes. Org Electron 13:1213–1222CrossRefGoogle Scholar
  46. 46.
    Lin SH, Chang CH, Liang KK, Chang R, Shiu YJ, Zhang JM, Yang TS, Hayashi M, Hsu FC (2002) Ultrafast dynamics and spectroscopy of bacterial photosynthetic reaction centers. Adv Chem Phys 121:1–88Google Scholar
  47. 47.
    Frisch MJ, Trucks GW, Schlegel HB (2004) Gaussian 03. Revision C.02 edn. Gaussian Inc., Wallingford CTGoogle Scholar
  48. 48.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  49. 49.
    Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  50. 50.
    Chaloner PA, Gunatunga SR, Hitchcock PB (1994) Redetermination of 2,2′-bithiophene. Acta Crystallogr Sect C: Cryst Struct Commun 50:1941–1942CrossRefGoogle Scholar
  51. 51.
    Curtis MD, Cao J, Kampf JW (2004) Solid-state packing of conjugated oligomers: from π-stacks to the herringbone structure. J Am Chem Soc 126:4318–4328CrossRefGoogle Scholar
  52. 52.
    Reimers JR (2001) A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules. J Chem Phys 115:9103–9109CrossRefGoogle Scholar
  53. 53.
    Lin SH, Bersohn R (1968) Effect of partial deuteration and temperature on triplet-state lifetimes. J Chem Phys 48:2732–2736CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingPeople’s Republic of China
  2. 2.MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations