Advertisement

Coupled cluster evaluation of the second and third harmonic scattering responses of small molecules

  • Pierre Beaujean
  • Benoît Champagne
Regular Article
  • 159 Downloads
Part of the following topical collections:
  1. Festschrift in honour of A. Rizzo

Abstract

The static and dynamic second harmonic (\(\beta _{\mathrm{SHS}}\)) and third harmonic (\(\gamma _{\mathrm{THS}}\)) scattering hyperpolarizabilities and depolarization ratios of water, carbon tetrachloride, chloroform, dichloromethane, chloromethane, and acetonitrile have been evaluated at the coupled cluster response theory level of approximation. Following two recent publications on their measurements, this is the first quantum chemical investigation on \(\gamma _{\mathrm{THS}}\) and on its decomposition into its spherical tensor components. Substantial electron correlation and basis set effects are evidenced for \(\beta _{\mathrm{SHS}}\) and \(\gamma _{\mathrm{THS}}\) and for their depolarization ratios, and they depend on the nature of the molecule. Then, using the selected CCSD/d-aug-cc-pVDZ level, the chlorinated methane derivatives have been studied, showing that (i) the \(\gamma _{\mathrm{THS}}\) response is dominated by its isotropic contribution, whereas (ii) for \(\beta _{\mathrm{SHS}}\) the dipolar contribution increases from carbon tetrachloride to dichloromethane, chloroform, chloromethane, and acetonitrile. Comparisons with the experimental data obtained from measurements in liquid phase (i) show that the increase of \(\gamma _{\mathrm{THS}}\) with the number for chlorine atoms is well reproduced by the calculations and (ii) suggest that the solvation effects are smaller for \(\gamma _{\mathrm{THS}}\) than for \(\beta _{\mathrm{SHS}}\).

Keywords

First and second hyperpolarizabilities Coupled cluster response functions Second and third harmonic scattering 

Notes

Acknowledgements

At the occasion of his 60th birthday, it is a pleasure to dedicate this paper to Prof. Antonio RIZZO, who is pioneering since several decades the evaluation of high-order optical effects and their confrontation with experiment, leading to an improved understanding of the interactions between light and matter. This work was supported by funds from the Francqui Foundation. The calculations were performed on the computers of the Consortium des Équipements de Calcul Intensif, including those of the Technological Platform of High-Performance Computing, for which we gratefully acknowledge the financial support of the FNRS-FRFC (Convention Nos. 2.4.617.07.F and 2.5020.11) and of the University of Namur.

Supplementary material

214_2018_2219_MOESM1_ESM.pdf (95 kb)
Supplementary material 1 (pdf 94 KB)

References

  1. 1.
    Franken PA, Hill AE, Peters CW, Weinreich G (1961) Phys Rev Lett 7:118–119.  https://doi.org/10.1103/PhysRevLett.7.118 CrossRefGoogle Scholar
  2. 2.
    Terhune RW, Maker PD, Savage CM (1962) Phys Rev Lett 8:404–406.  https://doi.org/10.1103/PhysRevLett.8.404 CrossRefGoogle Scholar
  3. 3.
    Verbiest T, Clays K, Rodriguez V (2009) Second-order nonlinear optical characterization techniques: an introduction. Taylor & Francis, Abington-on-ThamesCrossRefGoogle Scholar
  4. 4.
    Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195–242.  https://doi.org/10.1021/cr00025a007 CrossRefGoogle Scholar
  5. 5.
    Bredas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Chem Rev 94:243–278.  https://doi.org/10.1021/cr00025a008 CrossRefGoogle Scholar
  6. 6.
    Shelton DP, Rice JE (1994) Chem Rev 94:3–29.  https://doi.org/10.1021/cr00025a001 CrossRefGoogle Scholar
  7. 7.
    Bishop DM, Norman P (2001) In: Nalwa HS (ed) Handbook of advanced electronic and photonic materials and devices. Academic Press, San Diego, pp 1–62Google Scholar
  8. 8.
    Champagne B, Kirtman P (2001) In: Nalwa HS (ed) Handbook of advanced electronic and photonic materials and devices. Academic Press, San Diego, pp 63–127CrossRefGoogle Scholar
  9. 9.
    Papadopoulos MG, Sadlej AJ, Leszczynski J (2006) Non-linear optical properties of matter: from molecules to condensed phases. Springer, Dordrecht OCLC: 72145327CrossRefGoogle Scholar
  10. 10.
    Castet F, Rodriguez V, Pozzo JL, Ducasse L, Plaquet A, Champagne B (2013) Acc Chem Res 46:2656–2665.  https://doi.org/10.1021/ar4000955 CrossRefGoogle Scholar
  11. 11.
    Van Steerteghem N, Clays K, Verbiest T, Van Cleuvenbergen S (2017) Anal Chem 89:2964–2971.  https://doi.org/10.1021/acs.analchem.6b04429 CrossRefGoogle Scholar
  12. 12.
    Rodriguez V (2017) J Phys Chem C 121:8510–8514.  https://doi.org/10.1021/acs.jpcc.7b00983 CrossRefGoogle Scholar
  13. 13.
    Clays K, Persoons A (1991) Phys Rev Lett 66:2980–2983.  https://doi.org/10.1103/PhysRevLett.66.2980 CrossRefGoogle Scholar
  14. 14.
    Heesink GJT, Ruiter AGT, van Hulst NF, Bölger B (1993) Phys Rev Lett 71:999–1002.  https://doi.org/10.1103/PhysRevLett.71.999 CrossRefGoogle Scholar
  15. 15.
    Hendrickx E, Clays K, Persoons A (1998) Acc Chem Res 31:675–683.  https://doi.org/10.1021/ar960233o CrossRefGoogle Scholar
  16. 16.
    Shelton DP (2012) J Chem Phys 137:044312.  https://doi.org/10.1063/1.4738897 CrossRefGoogle Scholar
  17. 17.
    Ostroverkhov V, Petschek RG, Singer KD, Sukhomlinova L, Twieg RJ, Wang SX, Chien LC (2000) J Opt Soc Am B 17:1531–1542.  https://doi.org/10.1364/JOSAB.17.001531 CrossRefGoogle Scholar
  18. 18.
    Mançois F, Sanguinet L, Pozzo JL, Guillaume M, Champagne B, Rodriguez V, Adamietz F, Ducasse L, Castet F (2007) J Phys Chem B 111:9795–9802.  https://doi.org/10.1021/jp073386+ CrossRefGoogle Scholar
  19. 19.
    Duncan T, Song K, Hung ST, Miloradovic I, Nayak A, Persoons A, Verbiest T, Therien M, Clays K (2008) Angew Chem Int Ed 120:3020–3023.  https://doi.org/10.1002/ange.200703187 CrossRefGoogle Scholar
  20. 20.
    Asselberghs I, Flors C, Ferrighi L, Botek E, Champagne B, Mizuno H, Ando R, Miyawaki A, Hofkens J, Auweraer MVd, Clays K (2008) J Am Chem Soc 130:15713–15719.  https://doi.org/10.1021/ja805171q CrossRefGoogle Scholar
  21. 21.
    Garrett K, Sosa Vazquez X, Egri SB, Wilmer J, Johnson LE, Robinson BH, Isborn CM (2014) J Chem Theor Comput 10:3821–3831.  https://doi.org/10.1021/ct500528z CrossRefGoogle Scholar
  22. 22.
    Quertinmont J, Champagne B, Castet F, Hidalgo Cardenuto M (2015) J Phys Chem A 119:5496–5503.  https://doi.org/10.1021/acs.jpca.5b00631 CrossRefGoogle Scholar
  23. 23.
    Beaujean P, Bondu F, Plaquet A, Garcia-Amors J, Cusido J, Raymo FM, Castet F, Rodriguez V, Champagne B (2016) J Am Chem Soc 138:5052–5062.  https://doi.org/10.1021/jacs.5b13243 CrossRefGoogle Scholar
  24. 24.
    Coe BJ, Foxon SP, Pilkington RA, Sánchez S, Whittaker D, Clays K, Van Steerteghem N, Brunschwig BS (2016) Organometallics 35:3014–3024.  https://doi.org/10.1021/acs.organomet.6b00536 CrossRefGoogle Scholar
  25. 25.
    Bishop DM (1994) In: Sabin JR, Zerner MC (eds) Advances in quantum chemistry, vol 25. Academic Press, San Diego, pp 1–45.  https://doi.org/10.1016/S0065-3276(08)60017-9
  26. 26.
    Maroulis G (1991) J Chem Phys 94:1182–1190.  https://doi.org/10.1063/1.460025 CrossRefGoogle Scholar
  27. 27.
    Sekino H, Bartlett RJ (1993) J Chem Phys 98:3022–3037.  https://doi.org/10.1063/1.464129 CrossRefGoogle Scholar
  28. 28.
    Bishop DM, Norman P (1999) J Chem Phys 111:3042–3050.  https://doi.org/10.1063/1.479661 CrossRefGoogle Scholar
  29. 29.
    Rizzo A, Coriani S, Fernàndez B, Christiansen O (2002) Phys Chem Chem Phys 4:2884–2890.  https://doi.org/10.1039/b109689c CrossRefGoogle Scholar
  30. 30.
    Luis JM, Reis H, Papadopoulos M, Kirtman B (2009) J Chem Phys 131:034116.  https://doi.org/10.1063/1.3171615 CrossRefGoogle Scholar
  31. 31.
    Maroulis G, Menadakis M (2010) Chem Phys Lett 494:144–149.  https://doi.org/10.1016/j.cplett.2010.06.006 CrossRefGoogle Scholar
  32. 32.
    Dutra AS, Castro MA, Fonseca TL, Fileti EE, Canuto S (2010) J Chem Phys 132:034307.  https://doi.org/10.1063/1.3298914 CrossRefGoogle Scholar
  33. 33.
    Bast R, Ekström U, Gao B, Helgaker T, Ruud K, Thorvaldsen AJ (2011) Phys Chem Chem Phys 13:2627–2651.  https://doi.org/10.1039/C0CP01647K CrossRefGoogle Scholar
  34. 34.
    Bulik IW, Zaleśny R, Bartkowiak W, Luis JM, Kirtman B, Scuseria GE, Avramopoulos A, Reis H, Papadopoulos MG (2013) J Comput Chem 34:1775–1784.  https://doi.org/10.1002/jcc.23316 CrossRefGoogle Scholar
  35. 35.
    Coe JP, Paterson MJ (2014) J Chem Phys 141:124118.  https://doi.org/10.1063/1.4896229 CrossRefGoogle Scholar
  36. 36.
    Zaleśny R, Baranowska-Łaczkowska A, Medved’ M, Luis JM (2015) J Chem Theor Comput 11:4119–4128.  https://doi.org/10.1021/acs.jctc.5b00434 CrossRefGoogle Scholar
  37. 37.
    Castet F, Bogdan E, Plaquet A, Ducasse L, Champagne B, Rodriguez V (2012) J Chem Phys 136:024506.  https://doi.org/10.1063/1.3675848 CrossRefGoogle Scholar
  38. 38.
    Castet F, Champagne B (2012) J Chem Theor Comput 8:2044–2052.  https://doi.org/10.1021/ct300174z CrossRefGoogle Scholar
  39. 39.
    de Wergifosse M, Castet F, Champagne B (2015) J Chem Phys 142:194102.  https://doi.org/10.1063/1.4920977 CrossRefGoogle Scholar
  40. 40.
    Beaujean P, Champagne B (2016) J Chem Phys 145:044311.  https://doi.org/10.1063/1.4958736 CrossRefGoogle Scholar
  41. 41.
    Bishop DM, Kirtman B, Kurtz HA, Rice JE (1993) J Chem Phys 98:8024–8030.  https://doi.org/10.1063/1.464556 CrossRefGoogle Scholar
  42. 42.
    Bishop DM, Gu FL, Cybulski SM (1998) J Chem Phys 109:8407–8415.  https://doi.org/10.1063/1.477503 CrossRefGoogle Scholar
  43. 43.
    Andrews D (1980) J Phys B 13:4091–4099.  https://doi.org/10.1088/0022-3700/13/20/021 CrossRefGoogle Scholar
  44. 44.
    Andrews DL, Thirunamachandran T (1977) J Chem Phys 67:5026.  https://doi.org/10.1063/1.434725 CrossRefGoogle Scholar
  45. 45.
    Terhune RW, Maker PD, Savage CM (1965) Phys Rev Lett 14:681–684.  https://doi.org/10.1103/PhysRevLett.14.681 CrossRefGoogle Scholar
  46. 46.
    Cyvin SJ, Rauch JE, Decius JC (1965) J Chem Phys 43:4083.  https://doi.org/10.1063/1.1696646 CrossRefGoogle Scholar
  47. 47.
    Bersohn R, Pao Y, Frisch HL (1966) J Chem Phys 45:3184–3198.  https://doi.org/10.1063/1.1728092 CrossRefGoogle Scholar
  48. 48.
    Jerphagnon J, Chemla D, Bonneville R (1978) Adv Phys 27:609–650.  https://doi.org/10.1080/00018737800101454 CrossRefGoogle Scholar
  49. 49.
    Alexiewicz W, Ożgo Z, Kielich S (1975) Acta Phys Pol A 48:243Google Scholar
  50. 50.
    Tadeusz B, Zdzislaw O (2010) J Comput Methods Sci Eng  https://doi.org/10.3233/JCM-2010-0314
  51. 51.
    Brasselet S, Zyss J (1998) J Opt Soc Am B 15:257.  https://doi.org/10.1364/JOSAB.15.000257 CrossRefGoogle Scholar
  52. 52.
    Aidas K, Angeli C, Bak KL, Bakken V, Bast R, Boman L, Christiansen O, Cimiraglia R, Coriani S, Dahle P, Dalskov EK, Ekström U, Enevoldsen T, Eriksen JJ, Ettenhuber P, Fernández B, Ferrighi L, Fliegl H, Frediani L, Hald K, Halkier A, Hättig C, Heiberg H, Helgaker T, Hennum AC, Hettema H, Hjertenæs E, Høst S, Høyvik IM, Iozzi MF, Jansík B, Jensen HJAa, Jonsson D, Jørgensen P, Kauczor J, Kirpekar S, Kjærgaard T, Klopper W, Knecht S, Kobayashi R, Koch H, Kongsted J, Krapp A, Kristensen K, Ligabue A, Lutnæs OB, Melo JI, Mikkelsen KV, Myhre RH, Neiss C, Nielsen CB, Norman P, Olsen J, Olsen JMH, Osted A, Packer MJ, Pawlowski F, Pedersen TB, Provasi PF, Reine S, Rinkevicius Z, Ruden TA, Ruud K, Rybkin VV, Sałek P, Samson CCM, Merás ASde, Saue T, Sauer SPA, Schimmelpfennig B, Sneskov K, Steindal AH, Sylvester-Hvid KO, Taylor PR, Teale AM, Tellgren EI, Tew DP, Thorvaldsen AJ, Thøgersen L, Vahtras O, Watson MA, Wilson DJD, Ziolkowski M, Ågren H, (2014) WIREs Comput Mol Sci 4:269–284.  https://doi.org/10.1002/wcms.1172
  53. 53.
    Hättig C (1998) Chem Phys Lett 296:245–252.  https://doi.org/10.1016/S0009-2614(98)01004-5 CrossRefGoogle Scholar
  54. 54.
    Hättig C, Jørgensen P (1999) Adv Quantum Chem 35:111–148.  https://doi.org/10.1016/S0065-3276(08)60458-X CrossRefGoogle Scholar
  55. 55.
    Christiansen O, Gauss J, Stanton JF (1999) Chem Phys Lett 305:147–155.  https://doi.org/10.1016/S0009-2614(99)00358-9 CrossRefGoogle Scholar
  56. 56.
    Helgaker T, Coriani S, Jørgensen P, Kristensen K, Olsen J, Ruud K (2012) Chem Rev 112:543CrossRefGoogle Scholar
  57. 57.
    Dunning TH (1989) J Chem Phys 90:1007.  https://doi.org/10.1063/1.456153 CrossRefGoogle Scholar
  58. 58.
    Paterson MJ, Christiansen O, Pawłowski F, Jørgensen P, Hättig C, Helgaker T, Sałek P (2006) J Chem Phys 124:054322.  https://doi.org/10.1063/1.2163874 CrossRefGoogle Scholar
  59. 59.
    Chutjian A, Hall RI, Trajmar S (1975) J Chem Phys 63:892–898.  https://doi.org/10.1063/1.431370 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured MatterUniversity of NamurNamurBelgium

Personalised recommendations