Computational analysis of the competitive bonding and reactivity pattern of a bifunctional cyclooctyne on Si(001)

  • Lisa Pecher
  • Ralf TonnerEmail author
Regular Article
Part of the following topical collections:
  1. First European Symposium on Chemical Bonding


The chemoselective bonding of a bifunctional organic molecule on a semiconductor surface is analyzed with density functional theory (DFT). Periodic energy decomposition analysis is used to reveal the bonding characteristics of different adsorption modes and transition states for 5-ethoxymethyl-5-methylcyclooctyne on Si(001). This system has previously been experimentally proven to be a prototype model system for inorganic–organic hybrid interfaces. The molecule thereby poses challenges for a theoretical description of conformational flexibility and competitive adsorption behavior of the two functional groups. We find that adsorption via the strained triple bond is preferred over the ether group, thus confirming previous experiments. Bonding analysis in combination with static DFT as well as ab initio molecular dynamics methods thereby reveals the determining factors for this chemoselectivity and shows that the functional groups barely influence each other in their surface adsorption.


Energy decomposition analysis Surface chemistry Semiconductors ab initio molecular dynamics Density functional theory 



We thank HRZ Marburg, LOEWE-CSC Frankfurt and HLRS Stuttgart for providing computational resources and Jan-Niclas Luy (Marburg) for preliminary work.


We thank the Deutsche Forschungsgemeinschaft (DFG) for funding via SFB 1083

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

214_2018_2212_MOESM1_ESM.pdf (2.7 mb)
Supplementary material 1 (pdf 2757 KB)


  1. 1.
    Wolkow RA (1999) Annu Rev Phys Chem 50:413CrossRefGoogle Scholar
  2. 2.
    Teplyakov AV, Bent SF (2013) J Vac Sci Technol A 31:050810CrossRefGoogle Scholar
  3. 3.
    Rosenow P, Jakob P, Tonner R (2016) J Phys Chem Lett 7:1422CrossRefGoogle Scholar
  4. 4.
    Hossain MZ, Yamashita Y, Mukai K, Yoshinobu J (2004) Chem Phys Lett 388:27CrossRefGoogle Scholar
  5. 5.
    Reutzel M, Münster N, Lipponer MA, Länger C, Höfer U, Koert U, Dürr M (2016) J Phys Chem C 120:26284CrossRefGoogle Scholar
  6. 6.
    Mette G, Dürr M, Bartholomäus R, Koert U, Höfer U (2013) Chem Phys Lett 556:70CrossRefGoogle Scholar
  7. 7.
    Mette G, Reutzel M, Bartholomäus R, Laref S, Tonner R, Dürr M, Koert U, Höfer U (2014) ChemPhysChem 15:3725CrossRefGoogle Scholar
  8. 8.
    Reutzel M, Mette G, Stromberger P, Koert U, Dürr M, Höfer U (2015) J Phys Chem C 119:6018CrossRefGoogle Scholar
  9. 9.
    Reutzel M, Lipponer M, Dürr M, Höfer U (2015) J Phys Chem Lett 6:3971CrossRefGoogle Scholar
  10. 10.
    Pecher J, Schober C, Tonner R (2017) Chem Eur J 23:5459CrossRefGoogle Scholar
  11. 11.
    Pecher L, Schmidt S, Tonner R (2017) J Phys Chem C 121:26840CrossRefGoogle Scholar
  12. 12.
    Pecher L, Laref S, Raupach M, Tonner R (2017) Angew Chem Int Ed 56:15150CrossRefGoogle Scholar
  13. 13.
    Kresse G, Hafner J (1993) Phys Rev B 47:558CrossRefGoogle Scholar
  14. 14.
    Kresse G, Hafner J (1994) Phys Rev B 49:14251CrossRefGoogle Scholar
  15. 15.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  16. 16.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  17. 17.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  18. 18.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  19. 19.
    Perdew JP, Burke K, Enzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  20. 20.
    Perdew JP, Burke K, Enzerhof M (1997) Phys Rev Lett 78:1396CrossRefGoogle Scholar
  21. 21.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRefGoogle Scholar
  22. 22.
    Grimme S, Ehrlich S, Goerigk L (2010) J Comput Chem 32:1456CrossRefGoogle Scholar
  23. 23.
    Boyd DRJ (1955) J Chem Phys 23:922CrossRefGoogle Scholar
  24. 24.
    Jónsson H, Mills G, Jacobsen KW (1998) In: Berne BJ, Ciccotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore, p 385CrossRefGoogle Scholar
  25. 25.
    Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901CrossRefGoogle Scholar
  26. 26.
    Henkelman G, Jónsson H (1999) J Chem Phys 111(15):7010CrossRefGoogle Scholar
  27. 27.
    Raupach M, Tonner R (2015) J Chem Phys 142:194105CrossRefGoogle Scholar
  28. 28.
    te Velde G, Baerends EJ (1991) Phys Rev B 44:7788CrossRefGoogle Scholar
  29. 29.
    BAND (2016) SCM, theoretical chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Accessed 20 Feb 2018
  30. 30.
    Verlet L (1967) Phys Rev 159:98CrossRefGoogle Scholar
  31. 31.
    Swope WC, Andersen HC, Berens PH, Wilson KR (1982) J Chem Phys 76:637CrossRefGoogle Scholar
  32. 32.
    Nosé S (1984) Mol Phys 52:255CrossRefGoogle Scholar
  33. 33.
    Nosé S (1984) J Chem Phys 81:511CrossRefGoogle Scholar
  34. 34.
    Random decimal fraction generator. Accessed 20 Feb 2018
  35. 35.
    Pecher J, Tonner R (2017) ChemPhysChem 18:34CrossRefGoogle Scholar
  36. 36.
    Pecher J, Mette G, Dürr M, Tonner R (2017) ChemPhysChem 18:357CrossRefGoogle Scholar
  37. 37.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297CrossRefGoogle Scholar
  38. 38.
    Riplinger C, Neese F (2013) J Chem Phys 138:034106CrossRefGoogle Scholar
  39. 39.
    Riplinger C, Sandhoefer B, Hansen A, Neese F (2013) J Chem Phys 139:134101CrossRefGoogle Scholar
  40. 40.
    Kim S-W, Lee J-H, Kim H-J, Cho J-H (2013) Chem Phys Lett 557:159CrossRefGoogle Scholar
  41. 41.
    Kuze N, Kuroki N, Takeuchi H, Egawa T, Konaka S (1993) J Mol Struct 301:81CrossRefGoogle Scholar
  42. 42.
    Ess DH, Jones GO, Houk KN (2008) Org Lett 10:1633CrossRefGoogle Scholar
  43. 43.
    Schoenebeck F, Ess DH, Jones GO, Houk KN (2009) J Am Chem Soc 131:8121CrossRefGoogle Scholar
  44. 44.
    Chenoweth K, Chenoweth D, Goddard WA III (2009) Org Biomol Chem 7:5255CrossRefGoogle Scholar
  45. 45.
    Pigge FC (2016) Curr Org Chem 20:1902CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fachbereich Chemie and Material Sciences CenterPhilipps-Universität MarburgMarburgGermany

Personalised recommendations