Tuning the optical and electronic properties of perylene diimides through transversal core extension

  • Joaquín CalboEmail author
  • Azahara Doncel-Giménez
  • Juan Aragó
  • Enrique Ortí
Regular Article
Part of the following topical collections:
  1. In Memoriam of Claudio Zicovich


Herein, we present a systematic study under the density functional theory on a series of perylene diimides (PDIs) to unravel the effect that transversal π-extension of the perylene core has on the optical and electronic properties. An unexpected increase in the HOMO–LUMO gap is predicted upon increasing the size of the polycyclic core going from the simplest PDI to the coronene-based CDI, whereas a systematic reduction in the gap is calculated upon further increase of the π-core in the D(X)CDI derivatives (X = B, N, A and T refer to benzene, naphthalene, anthracene and tetracene, respectively). This behaviour is explained in terms of orbital topology, geometry parameters and accumulated charges, evidencing an electronically isolated coronene moiety in CDI, whereas the π-extension for D(X)CDI disrupts the coronene conjugation pattern and creates electronically defined acene units. A hypsochromic shift of the lowest-lying singlet excited state is predicted going from PDI to CDI, in good accord with the experimental evidence. The low-lying experimental bands of CDI are unequivocally assigned to the vibrational structure of the first singlet electronic transition. Otherwise, moving to higher extended D(X)CDI derivatives, the expected bathochromic shift of the first singlet excited state was found along with an increase in the absorption intensity. Finally, appealing charge-transport properties are demonstrated for the family of perylene diimides. A gradual decrease in both hole and electron reorganization energies is calculated upon transversal core extension but for CDI. A hole reorganization energy of only 0.05 eV is calculated for the most π-extended DTCDI derivative, which competes with the best hole-transporting materials reported so far. These derivatives can therefore be viewed as appealing ambipolar systems, and especially as hole-transporters, to be exploited in next-generation photovoltaics.


Perylene diimides DFT calculations Transversal core extension 



This work was supported by the Spanish Ministry of Economy and Competitiveness MINECO (CTQ2015-71154-P and Unidad de Excelencia María de Maeztu MDM-2015-0538), the Generalitat Valenciana (PROMETEO/2016/135) and European FEDER funds (CTQ2015-71154-P). J.C. and J.A. are grateful to the Generalitat Valenciana for the APOSTD/2017/081 post-doctoral fellowship and to MINECO for a “JdC-incorporación” post-doctoral fellowship (IJCI-2015-26154), respectively.

Supplementary material

214_2018_2205_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1083 kb)


  1. 1.
    Andreas H, Klaus M (2006) Chem Lett 35(9):978–985CrossRefGoogle Scholar
  2. 2.
    Li C, Wonneberger H (2012) Adv Mater 24(5):613–636CrossRefGoogle Scholar
  3. 3.
    Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR (2011) Adv Mater 23(2):268–284CrossRefGoogle Scholar
  4. 4.
    Peneva K, Mihov G, Nolde F, Rocha S, Hotta J-I, Braeckmans K, Hofkens J, Uji-i H, Herrmann A, Müllen K (2008) Angew Chem Int Ed 47(18):3372–3375CrossRefGoogle Scholar
  5. 5.
    Davies M, Jung C, Wallis P, Schnitzler T, Li C, Müllen K, Bräuchle C (2011) ChemPhysChem 12(8):1588–1595CrossRefGoogle Scholar
  6. 6.
    Zang L, Che Y, Moore JS (2008) Acc Chem Res 41(12):1596–1608CrossRefGoogle Scholar
  7. 7.
    Dedecker P, Muls B, Deres A, Uji-i H, Hotta J-I, Sliwa M, Soumillion J-P, Müllen K, Enderlein J, Hofkens J (2009) Adv Mater 21(10–11):1079–1090CrossRefGoogle Scholar
  8. 8.
    Chen Z, Lohr A, Saha-Moller CR, Wurthner F (2009) Chem Soc Rev 38(2):564–584CrossRefGoogle Scholar
  9. 9.
    Würthner F (2004) Chem Commun (14):1564–1579Google Scholar
  10. 10.
    Wasielewski MR (2006) J Org Chem 71(14):5051–5066CrossRefGoogle Scholar
  11. 11.
    Weil T, Vosch T, Hofkens J, Peneva K, Müllen K (2010) Angew Chem Int Ed 49(48):9068–9093CrossRefGoogle Scholar
  12. 12.
    Segura JL, Herrera H, Bauerle P (2012) J Mater Chem 22(18):8717–8733CrossRefGoogle Scholar
  13. 13.
    Würthner F, Stepanenko V, Chen Z, Saha-Möller CR, Kocher N, Stalke D (2004) J Org Chem 69(23):7933–7939CrossRefGoogle Scholar
  14. 14.
    Chen Z, Baumeister U, Tschierske C, Würthner F (2007) Chem Eur J 13(2):450–465CrossRefGoogle Scholar
  15. 15.
    Holtrup FO, Müller GRJ, Quante H, De Feyter S, De Schryver FC, Müllen K (1997) Chem Eur J 3(2):219–225CrossRefGoogle Scholar
  16. 16.
    Quante H, Müllen K (1995) Angew Chem Int Ed 34(12):1323–1325CrossRefGoogle Scholar
  17. 17.
    Pschirer NG, Kohl C, Nolde F, Qu J, Müllen K (2006) Angew Chem Int Ed 45(9):1401–1404CrossRefGoogle Scholar
  18. 18.
    Nolde F, Pisula W, Müller S, Kohl C, Müllen K (2006) Chem Mater 18(16):3715–3725CrossRefGoogle Scholar
  19. 19.
    Jiang W, Li Y, Yue W, Zhen Y, Qu J, Wang Z (2010) Org Lett 12(2):228–231CrossRefGoogle Scholar
  20. 20.
    Yao JH, Chi C, Wu J, Loh K-P (2009) Chem Eur J 15(37):9299–9302CrossRefGoogle Scholar
  21. 21.
    Franceschin M, Alvino A, Casagrande V, Mauriello C, Pascucci E, Savino M, Ortaggi G, Bianco A (2007) Biorg Med Chem 15(4):1848–1858CrossRefGoogle Scholar
  22. 22.
    Pollard AJ, Perkins EW, Smith NA, Saywell A, Goretzki G, Phillips AG, Argent SP, Sachdev H, Müller F, Hüfner S, Gsell S, Fischer M, Schreck M, Osterwalder J, Greber T, Berner S, Champness NR, Beton PH (2010) Angew Chem Int Ed 49(10):1794–1799CrossRefGoogle Scholar
  23. 23.
    Rohr U, Schlichting P, Böhm A, Gross M, Meerholz K, Bräuchle C, Müllen K (1998) Angew Chem Int Ed 37(10):1434–1437CrossRefGoogle Scholar
  24. 24.
    An Z, Yu J, Domercq B, Jones SC, Barlow S, Kippelen B, Marder SR (2009) J Mater Chem 19(37):6688–6698CrossRefGoogle Scholar
  25. 25.
    Muller S, Mullen K (2005) Chem Commun (32):4045–4046Google Scholar
  26. 26.
    Rohr U, Kohl C, Mullen K, van de Craats A, Warman J (2001) J Mater Chem 11(7):1789–1799CrossRefGoogle Scholar
  27. 27.
    Avlasevich Y, Li C, Mullen K (2010) J Mater Chem 20(19):3814–3826CrossRefGoogle Scholar
  28. 28.
    Grimsdale AC, Müllen K (2005) Angew Chem Int Ed 44(35):5592–5629CrossRefGoogle Scholar
  29. 29.
    Chen L, Li C, Müllen K (2014) J Mater Chem C 2(11):1938–1956CrossRefGoogle Scholar
  30. 30.
    Delgado MCR, Kim E-G, da Silva Filho DA, Brédas J-L (2010) J Am Chem Soc 132(10):3375–3387CrossRefGoogle Scholar
  31. 31.
    Zhao X, Xiong Y, Ma J, Yuan Z (2016) J Phys Chem A 120(38):7554–7560CrossRefGoogle Scholar
  32. 32.
    Lütke Eversloh C, Li C, Müllen K (2011) Org Lett 13(15):4148–4150CrossRefGoogle Scholar
  33. 33.
    Li Y, Xu L, Liu T, Yu Y, Liu H, Li Y, Zhu D (2011) Org Lett 13(20):5692–5695CrossRefGoogle Scholar
  34. 34.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01, Wallingford CTGoogle Scholar
  35. 35.
    Becke AD (1993) J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  36. 36.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  37. 37.
    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, Defrees DJ, Pople JA (1982) J Chem Phys 77(7):3654–3665CrossRefGoogle Scholar
  38. 38.
    Zhurko GA ChemCraft 1.8.
  39. 39.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88(6):899–926CrossRefGoogle Scholar
  40. 40.
    Jamorski C, Casida ME, Salahub DR (1996) J Chem Phys 104(13):5134–5147CrossRefGoogle Scholar
  41. 41.
    Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108(11):4439–4449CrossRefGoogle Scholar
  42. 42.
    Petersilka M, Gossmann UJ, Gross EKU (1996) Phys Rev Lett 76(8):1212–1215CrossRefGoogle Scholar
  43. 43.
    Scalmani G, Frisch MJ (2010) J Chem Phys 132(11):114110CrossRefGoogle Scholar
  44. 44.
    Becke AD (1988) Phys Rev A 38(6):3098–3100CrossRefGoogle Scholar
  45. 45.
    Stein T, Kronik L, Baer R (2009) J Am Chem Soc 131(8):2818–2820CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Yang W (1998) Phys Rev Lett 80(4):890CrossRefGoogle Scholar
  47. 47.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132(15):154104CrossRefGoogle Scholar
  48. 48.
    Franck J, Dymond EG (1926) Trans Faraday Soc 21(February):536–542CrossRefGoogle Scholar
  49. 49.
    Condon EU (1928) Phys Rev 32(6):858–872CrossRefGoogle Scholar
  50. 50.
    Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104(11):4971–5004CrossRefGoogle Scholar
  51. 51.
    Zhan C-G, Nichols JA, Dixon DA (2003) J Phys Chem A 107(20):4184–4195CrossRefGoogle Scholar
  52. 52.
    Avlasevich Y, Müller S, Erk P, Müllen K (2007) Chem Eur J 13(23):6555–6561CrossRefGoogle Scholar
  53. 53.
    Cai Z-L, Sendt K, Reimers JR (2002) J Chem Phys 117(12):5543–5549CrossRefGoogle Scholar
  54. 54.
    Grimme S, Parac M (2003) ChemPhysChem 4(3):292–295CrossRefGoogle Scholar
  55. 55.
    Tozer DJ, Amos RD, Handy NC, Roos BO, Serrano-Andres L (1999) Mol Phys 97(7):859–868CrossRefGoogle Scholar
  56. 56.
    Sobolewski AL, Domcke W (2003) Chem Phys 294(1):73–83CrossRefGoogle Scholar
  57. 57.
    Dreuw A, Head-Gordon M (2004) J Am Chem Soc 126(12):4007–4016CrossRefGoogle Scholar
  58. 58.
    Balakrishnan K, Datar A, Naddo T, Huang J, Oitker R, Yen M, Zhao J, Zang L (2006) J Am Chem Soc 128(22):7390–7398CrossRefGoogle Scholar
  59. 59.
    Buendía J, Calbo J, Ortí E, Sánchez L (2017) Small 13(20):1603880CrossRefGoogle Scholar
  60. 60.
    Valera JS, Calbo J, Gómez R, Ortí E, Sánchez L (2015) Chem Commun 51(50):10142–10145CrossRefGoogle Scholar
  61. 61.
    Karuppuswamy P, Hanmandlu C, Moorthy Boopathi K, Perumal P, Liu C-C, Chen Y-F, Chang Y-C, Wang P-C, Lai C-S, Chu C-W (2017) Sol Energy Mater Sol Cells 169(Supplement C):78–85CrossRefGoogle Scholar
  62. 62.
    Edri E, Kirmayer S, Cahen D, Hodes G (2013) J Phys Chem Lett 4(6):897–902CrossRefGoogle Scholar
  63. 63.
    Das J, Bhaskar Kanth Siram R, Cahen D, Rybtchinski B, Hodes G (2015) J Mater Chem A 3(40):20305–20312CrossRefGoogle Scholar
  64. 64.
    Marcus RA (1993) Rev Mod Phys 65(3):599–610CrossRefGoogle Scholar
  65. 65.
    McMahon DP, Troisi A (2010) J Phys Chem Lett 1(6):941–946CrossRefGoogle Scholar
  66. 66.
    García-Benito I, Zimmermann I, Urieta-Mora J, Aragó J, Molina-Ontoria A, Ortí E, Martín N, Nazeeruddin MK (2017) J Mater Chem A 5(18):8317–8324CrossRefGoogle Scholar
  67. 67.
    Sokolov AN, Atahan-Evrenk S, Mondal R, Akkerman HB, Sánchez-Carrera RS, Granados-Focil S, Schrier J, Mannsfeld SCB, Zoombelt AP, Bao Z, Aspuru-Guzik A (2011) Nat Commun 2(437):1–8Google Scholar
  68. 68.
    Yao Y, Dong H, Hu W (2016) Adv Mater 28(22):4513–4523CrossRefGoogle Scholar
  69. 69.
    Sandoval-Torrientes R, Calbo J, Matsuda W, Choi W, Santos J, Seki S, Ortí E, Martín N (2017) ChemPlusChem 82(7):1105–1111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Ciencia MolecularUniversidad de ValenciaPaternaSpain

Personalised recommendations