Advertisement

Theoretical Chemistry Accounts

, 136:139 | Cite as

Revealing strong interactions with the reduced density gradient: a benchmark for covalent, ionic and charge-shift bonds

  • Roberto A. Boto
  • Jean-Philip Piquemal
  • Julia Contreras-García
Regular Article
Part of the following topical collections:
  1. First European Symposium on Chemical Bonding

Abstract

The visualization of covalent interactions has been a common practice in theoretical chemistry thanks to the electron localization function (ELF). More recently, the reduced density gradient (RDG) has been introduced as a tool for revealing non-covalent interactions. Along reactions, interactions change from weak to strong and vice versa. Thus, a tool enabling to analyze all of them simultaneously is fundamental for reactivity studies. This contribution is aimed at filling this gap within the NCI approach. We will highlight the ability of RDG to reveal also strong interactions and produce a benchmark that covers covalent, ionic and charge-shift bonds. The ability of the NCI descriptor to differentiate among them will be highlighted.

Keywords

Visualization Reduced density gradient Strong interactions NCI 

Notes

Acknowledgements

We are grateful to the reviewers of our paper for their careful reading and helping to improve this manuscript. This work was supported partially by the framework of CALSIMLAB under the public grant ANR-11-LABX-0037-01 overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (reference: ANR-11-IDEX-0004-02).

References

  1. 1.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865CrossRefGoogle Scholar
  2. 2.
    del Campo JM, Gázquez JL, Alvarez-Mendez RJ, Vela A (2012) Int J Quantum Chem 112(22):3594CrossRefGoogle Scholar
  3. 3.
    Zupan A, Perdew JP, Burke K, Causa M (1997) Int J Quantum Chem 61(5):835CrossRefGoogle Scholar
  4. 4.
    Schmider H, Sagar RP, Smith VH Jr (1992) Can J Chem 70(2):506CrossRefGoogle Scholar
  5. 5.
    Kohout M, Savin A, Preuss H (1991) J Chem Phys 95(3):1928CrossRefGoogle Scholar
  6. 6.
    Finzel K, Grin Y, Kohout M (2012) Theor Chem Acc 131(2):1CrossRefGoogle Scholar
  7. 7.
    Kohout M, Pernal K, Wagner FR, Grin Y (2004) Theor Chem Acc: Theory, Comput, Model 112(5):453CrossRefGoogle Scholar
  8. 8.
    Kohout M, Pernal K, Wagner F, Grin Y (2005) Theor Chem Acc: Theory, Comput, Model 113(5):287CrossRefGoogle Scholar
  9. 9.
    Kohout M, Wagner F, Grin Y (2008) Theor Chem Acc: Theory, Comput, Model 119(5):413CrossRefGoogle Scholar
  10. 10.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) J Am Chem Soc 132(18):6498CrossRefGoogle Scholar
  11. 11.
    Bohórquez HJ, Boyd RJ (2010) Theor Chem Acc 127(4):393CrossRefGoogle Scholar
  12. 12.
    Bohórquez HJ, Matta CF, Boyd RJ (2010) Int J Quantum Chem 110(13):2418Google Scholar
  13. 13.
    De Silva P, Corminboeuf C (2014) J Chem Theory Comput 10(9):3745CrossRefGoogle Scholar
  14. 14.
    Boto RA, Contreras-García J, Tierny J, Piquemal JP (2015) Mol Phys 1–9Google Scholar
  15. 15.
    Cedillo A, Robles J, Gázquez JL (1988) Phys Rev A 38(4):1697CrossRefGoogle Scholar
  16. 16.
    Tal Y, Bader R (1978) Int J Quantum Chem 14(S12):153CrossRefGoogle Scholar
  17. 17.
    Bader RF (1990) Atoms in molecules Wiley Online LibraryGoogle Scholar
  18. 18.
    Pendás AM, Francisco E, Blanco MA, Gatti C (2007) Chem A Eur J 13(33):9362CrossRefGoogle Scholar
  19. 19.
    Hunter G (1986) Int J Quantum Chem 29(2):197CrossRefGoogle Scholar
  20. 20.
    Kohout M (2016) Mol Phys 114(7–8):1297CrossRefGoogle Scholar
  21. 21.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09 Revision E.01. Gaussian Inc. Wallingford CTGoogle Scholar
  22. 22.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S et al (1993) J Comput Chem 14(11):1347CrossRefGoogle Scholar
  23. 23.
    Ahrens J, Geveci B, Law C, Hansen C, Johnson C (2005) 36-paraview: an end-user tool for large-data visualizationGoogle Scholar
  24. 24.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Gr 14(1):33CrossRefGoogle Scholar
  25. 25.
    Fischer A, Tiana D, Scherer W, Batke K, Eickerling G, Svendsen H, Bindzus N, Iversen BB (2011) J Phys Chem A 115(45):13061CrossRefGoogle Scholar
  26. 26.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397CrossRefGoogle Scholar
  27. 27.
    Reinhardt P, Hoggan PE (2009) Int J Quantum Chem 109(14):3191CrossRefGoogle Scholar
  28. 28.
    Contreras-García J, Calatayud M, Piquemal JP, Recio J (2012) Comput Theor Chem 998:193CrossRefGoogle Scholar
  29. 29.
    Llusar R, Beltrán A, Andrés J, Noury S, Silvi B (1999) J Comput Chem 20(14):1517CrossRefGoogle Scholar
  30. 30.
    Shaik S, Danovich D, Silvi B, Lauvergnat DL, Hiberty PC (2005) Chem A Eur J 11(21):6358CrossRefGoogle Scholar
  31. 31.
    Shaik S, Maitre P, Sini G, Hiberty PC (1992) J Am Chem Soc 114(20):7861CrossRefGoogle Scholar
  32. 32.
    Wu W, Gu J, Song J, Shaik S, Hiberty PC (2009) Angewandte Chemie 121(8):1435CrossRefGoogle Scholar
  33. 33.
    Gershoni-Poranne R, Chen P (2017) Chem A Eur J 23(19):4659CrossRefGoogle Scholar
  34. 34.
    Wagner K, Kohout M (2011) Theor Chem Acc 128(1):39CrossRefGoogle Scholar
  35. 35.
    Contreras-Garcia J, Yang W. Chemical concepts from density functional theory (Acta Physico-Chimica Sinica.), chap. The chemical information in Jacob’s ladder. (To be submitted)Google Scholar
  36. 36.
    Gillet N, Chaudret R, Contreras-Garc\(\acute{\iota }\)a J, Yang W, Silvi B, Piquemal JP (2012) J Chem Theory Comput 8(11):3993Google Scholar
  37. 37.
    Fang D, Chaudret R, Piquemal JP, Cisneros GA (2013) J Chem Theory Comput 9(5):2156CrossRefGoogle Scholar
  38. 38.
    Andrés J, Berski S, Contreras-García J, González-Navarrete P (2014) J Phys Chem A 118(9):1663CrossRefGoogle Scholar
  39. 39.
    Armstrong A, Boto RA, Dingwall P, Contreras-Garcia J, Harvey MJ, Mason NJ, Rzepa HS (2014) Chem Sci 5(5):2057CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Roberto A. Boto
    • 1
  • Jean-Philip Piquemal
    • 2
    • 3
  • Julia Contreras-García
    • 2
    • 3
  1. 1.CICECO - Aveiro Institute of MaterialsUniversity of AveiroAveiroPortugal
  2. 2.UMR 7616, Laboratoire de Chimie ThéoriqueSorbonne Universités, UPMC Universités Paris 06ParisFrance
  3. 3.CNRSUMR 7616, Laboratoire de Chimie ThéoriqueParisFrance

Personalised recommendations