Advertisement

Theoretical Chemistry Accounts

, 136:135 | Cite as

The HSAB principle from a finite-temperature grand-canonical perspective

  • Ramón Alain Miranda-Quintana
  • Taewon David Kim
  • Carlos Cárdenas
  • Paul W. Ayers
Regular Article

Abstract

We provide a new proof for Pearson’s hard/soft acid/base (HSAB) principle. Unlike alternative proofs, we do not presuppose a simplified parabolic dependence on the energy of the system with respect to changes in its number of electrons. Instead, we use the more physically grounded finite-temperature formulation of the grand-canonical ensemble. We show that under the usual assumptions regarding the chemical potentials and hardnesses of the involved species, the HSAB rule holds for a wide range of temperatures.

Keywords

Conceptual DFT Hard/soft acid/base principle Finite-temperature Grand-canonical ensemble 

Notes

Acknowledgements

RAMQ, TDK, and PWA thank NSERC, the Canada Research Chairs, and Compute Canada for support. RAMQ acknowledges support from Foreign Affairs, Trade and Development Canada in the form of an ELAP scholarship. CC acknowledges support by FONDECYT (Grant 1140313), Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia-FB0807, and Project RC-130006 CILIS, Granted by the Fondo de Innovación para la Competitividad del Ministerio de Economía, Fomento y Turismo de Chile. Discussions with Laritza Domínguez and Cristina González are gratefully acknowledged.

References

  1. 1.
    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar
  2. 2.
    Pearson RG (1966) Acids and bases. Science 151:172–177CrossRefGoogle Scholar
  3. 3.
    Pearson RG (1967) Hard and soft acids and bases. ChemBr 3(3):103–107Google Scholar
  4. 4.
    Ayers PW (2005) An elementary derivation of the hard/soft-acid/base principle. J Chem Phys 122:141102CrossRefGoogle Scholar
  5. 5.
    Ayers PW, Parr RG, Pearson RG (2006) Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J Chem Phys 124:194107CrossRefGoogle Scholar
  6. 6.
    Cardenas C, Ayers PW (2013) How reliable is the hard-soft acid-base principle? An assessment from numerical simulations of electron transfer energies. PCCP 15(33):13959–13968.  https://doi.org/10.1039/c3cp51134k CrossRefGoogle Scholar
  7. 7.
    Ayers PW, Cardenas C (2013) Communication: a case where the hard/soft acid/base principle holds regardless of acid/base strength. J Chem Phys 138:181106CrossRefGoogle Scholar
  8. 8.
    Ayers PW (2007) The physical basis of the hard/soft acid/base principle. Faraday Discuss 135:161–190CrossRefGoogle Scholar
  9. 9.
    Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856CrossRefGoogle Scholar
  10. 10.
    Gazquez JL, Mendez F (1994) The hard and soft acids and bases principle: an atoms in molecules viewpoint. J Phys Chem 98:4591–4593CrossRefGoogle Scholar
  11. 11.
    Mendez F, Gazquez JL (1994) Chemical-reactivity of enolate ions: the local hard and soft acids and bases principle viewpoint. J Am Chem Soc 116:9298–9301CrossRefGoogle Scholar
  12. 12.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford UP, New YorkGoogle Scholar
  13. 13.
    Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154CrossRefGoogle Scholar
  14. 14.
    Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873CrossRefGoogle Scholar
  15. 15.
    Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: The Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018CrossRefGoogle Scholar
  16. 16.
    Ayers PW, Parr RG (2001) Variational principles for describing chemical reactions. Reactivity indices based on the external potential. J Am Chem Soc 123:2007–2017CrossRefGoogle Scholar
  17. 17.
    Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–534CrossRefGoogle Scholar
  18. 18.
    Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) Charge density and chemical reactivity: a unified view from conceptual DFT”. In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, pp 715–764Google Scholar
  19. 19.
    Chattaraj PK (ed) (2009) Chemical reactivity theory: a density functional view. CRC Press, Boca Raton, FloridaGoogle Scholar
  20. 20.
    Liu SB (2009) Conceptual density functional theory and some recent developments. Acta Phys Chim Sin 25:590–600Google Scholar
  21. 21.
    Gazquez JL (2008) Perspectives on the density functional theory of chemical reactivity. J Mex Chem Soc 52:3–10Google Scholar
  22. 22.
    Miranda-Quintana RA (2018) Density functional theory for chemical reactivity. In: Islam N, Kaya S (eds) Conceptual density functional theory and its applications in the chemical domain. Apple Academic Press, HamiltonGoogle Scholar
  23. 23.
    Fuentealba P, Cárdenas C (2015) Density functional theory of chemical reactivity. In: Springborg M (ed) Chemical modelling, vol 11. The Royal Society of Chemistry, London, pp 151–174Google Scholar
  24. 24.
    Chattaraj PK, Ayers PW (2005) The maximum hardness principle implies the hard/soft acid/base rule. J Chem Phys 123:086101CrossRefGoogle Scholar
  25. 25.
    Chattaraj PK, Ayers PW, Melin J (2007) Further links between the maximum hardness principle and the hard/soft acid/base principle: insights from hard/soft exchange reactions. PCCP 9:3853–3856CrossRefGoogle Scholar
  26. 26.
    Miranda-Quintana RA (2017) The minimum electrophilicity and the hard/soft acid/base principles. J Chem Phys 146:046101CrossRefGoogle Scholar
  27. 27.
    Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855CrossRefGoogle Scholar
  28. 28.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807CrossRefGoogle Scholar
  29. 29.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  30. 30.
    Cardenas C, Ayers PW, De Proft F, Tozer DJ, Geerlings P (2011) Should negative electron affinities be used for evaluating the chemical hardness. PCCP 13:2285–2293CrossRefGoogle Scholar
  31. 31.
    Cardenas C, Heidar Zadeh F, Ayers PW (2016) Benchmark values of chemical potential and chemical hardness for atoms and atomic ions (including unstable anions) from the energies of isoelectronic series. PCCP 18:25721–25734CrossRefGoogle Scholar
  32. 32.
    Heidar Zadeh F, Richer M, Fias S, Miranda-Quintana RA, Chan M, Franco-Pérez M, Gonzalez-Espinoza CE, Kim TD, Lanssens C, Patel AHG, Yang XD, Vohringer-Martinez E, Cardenas C, Verstraelen T, Ayers PW (2016) An explicit approach to conceptual density functional theory descriptors of arbitrary order. Chem Phys Lett 660:307–312CrossRefGoogle Scholar
  33. 33.
    Ayers PW (2007) On the electronegativity nonlocality paradox. Theor Chem Acc 118:371–381CrossRefGoogle Scholar
  34. 34.
    Fuentealba P, Cardenas C (2013) On the exponential model for energy with respect to number of electrons. J Mol Model 19:2849–2853CrossRefGoogle Scholar
  35. 35.
    Parr RG, Bartolotti LJ (1982) On the geometric mean principle for electronegativity equalization. J Am Chem Soc 104:3801–3803CrossRefGoogle Scholar
  36. 36.
    Fuentealba P, Parr RG (1991) Higher-order derivatives in density-functional theory, especially the hardness derivative. J Chem Phys 94:5559–5564CrossRefGoogle Scholar
  37. 37.
    Miranda-Quintana RA, Ayers PW (2018) Grand-canonical interpolation models. In: Islam N, Kaya S (eds) Conceptual density functional theory and its applications in the chemical domain. Apple Academic Press, HamiltonGoogle Scholar
  38. 38.
    Miranda-Quintana RA, Ayers PW (2016) Interpolation of property-values between electron numbers is inconsistent with ensemble averaging. J Chem Phys 144:244112CrossRefGoogle Scholar
  39. 39.
    Heidar Zadeh F, Miranda-Quintana RA, Verstraelen T, Bultinck P, Ayers PW (2016) When is the Fukui function not normalized? The danger of inconsistent energy interpolation models in density functional theory. J Chem Theory Comp 12:5777–5787CrossRefGoogle Scholar
  40. 40.
    Perdew JP, Parr RG, Levy M, Balduz JL Jr. (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694CrossRefGoogle Scholar
  41. 41.
    Yang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84:5172–5175CrossRefGoogle Scholar
  42. 42.
    Ayers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43:285–303CrossRefGoogle Scholar
  43. 43.
    Bochicchio RC, Rial D (2012) Note: energy convexity and density matrices in molecular systems. J Chem Phys 137:226101CrossRefGoogle Scholar
  44. 44.
    Bochicchio RC, Miranda-Quintana RA, Rial D (2013) Communication: Reduced density matrices in molecular systems: grand-canonical electron states. J Chem Phys 139(19):191101.  https://doi.org/10.1063/1.4832495 CrossRefGoogle Scholar
  45. 45.
    Miranda-Quintana RA, Bochicchio RC (2014) Energy dependence with the number of particles: density and reduced density matrices functionals. Chem Phys Lett 593:35–39.  https://doi.org/10.1016/j.cplett.2013.12.071 CrossRefGoogle Scholar
  46. 46.
    Mermin ND (1965) Thermal properties of the inhomogeneous electron gas. PhysRev 137:A1441–A1443Google Scholar
  47. 47.
    Franco-Pérez M, Ayers P, Gazquez JL, Vela A (2015) Local and linear chemical reactivity responsefunctions at finite temperature in density functional theory. J Chem Phys 143:244117CrossRefGoogle Scholar
  48. 48.
    Franco-Pérez M, Gazquez JL, Ayers P, Vela A (2015) Revisiting the definition of electronic chemical potential, chemical hardness, and softness at finite temperatures. J Chem Phys 143:154103CrossRefGoogle Scholar
  49. 49.
    Franco-Pérez M, Heidar-Zadeh F, Ayers PW, Gazquez JL, Vela A (2017) Going beyond the three-states ensemble model: the electronic chemical potential and Fukui function for the general case. PCCP 19:11588–11602CrossRefGoogle Scholar
  50. 50.
    Franco-Pérez M, Ayers PW, Gazquez JL, Vela A (2017) Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory. PCCP 19:13687–13695CrossRefGoogle Scholar
  51. 51.
    Polanco-Ramírez CA, Franco-Pérez M, Carmona-Espíndola J, Gazquez JL, Ayers PW (2017) Revisiting the definition of local hardness and hardness kernel. PCCP 19:12355–12364CrossRefGoogle Scholar
  52. 52.
    Miranda-Quintana RA, Ayers PW (2016) Fractional electron number, temperature, and perturbations in chemical reactions. PCCP 18:15070–15080CrossRefGoogle Scholar
  53. 53.
    Miranda-Quintana RA, Ayers PW (2016) Charge transfer and chemical potential in 1,3-dipolar cycloadditions. Theor Chem Acc 135:172CrossRefGoogle Scholar
  54. 54.
    Miranda-Quintana RA, González MM, Ayers PW (2016) Electronegativity and redox reactions. PCCP 18:22235–22243CrossRefGoogle Scholar
  55. 55.
    Miranda-Quintana RA (2017) Thermodynamic electrophilicity. J Chem Phys 146:214113CrossRefGoogle Scholar
  56. 56.
    Miranda-Quintana RA, Chattaraj PK, Ayers PW (2017) Finite temperature grand canonical ensemble study of the minimum electrophilicity principle. J Chem Phys 147:124103CrossRefGoogle Scholar
  57. 57.
    Malek A, Balawender R (2015) Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness. J Chem Phys 142:054104.  https://doi.org/10.1063/1.4906555 CrossRefGoogle Scholar
  58. 58.
    Franco-Pérez M, Gazquez JL, Ayers PW, Vela A (2017) Thermodynamic hardness and the maximum hardness principle. J Chem Phys 147:074113CrossRefGoogle Scholar
  59. 59.
    Chattaraj PK, Liu GH, Parr RG (1995) The maximum hardness principle in the Gyftopoulos-Hatsopoulos three-level model for an atomic or molecular species and its positive and negative ions. Chem Phys Lett 237:171–176CrossRefGoogle Scholar
  60. 60.
    Chattaraj PK, Cedillo A, Parr RG (1996) Chemical softness in model electronic systems: dependence on temperature and chemical potential. ChemPhys 204:429–437Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ramón Alain Miranda-Quintana
    • 1
  • Taewon David Kim
    • 1
  • Carlos Cárdenas
    • 2
    • 3
  • Paul W. Ayers
    • 1
  1. 1.Department of Chemistry and Chemical BiologyMcMaster UniversityHamiltonCanada
  2. 2.Departamento de Física, Facultad de CienciasUniversidad de ChileSantiagoChile
  3. 3.Centro para el desarrollo de la Nanociencias y Nanotecnología, CEDENNASantiagoChile

Personalised recommendations