Dispersion corrections applied to the TCA family of exchange-correlation functionals

Regular Article


Dispersion corrections, namely the D3 and VV10 methodologies, have been added to the TCA GGA-like family of functionals. Without corrections, these functionals give very good results for iono-covalent systems, but they are inferior to other GGAs (e.g., PBE) for weakly interacting complexes. Applying dispersion corrections, this failure is completely overcome. In particular, RevTCA, which is the best functional for iono-covalent systems, becomes the best for weakly interacting complexes too, with mean absolute errors very often smaller than one tenth of \({\AA }\) for the geometries and 1 kcal/mol for the dissociation energies.


Density functional theory TCA correlation Dispersion correction Non-covalent interactions 



We thank TURBOMOLE GmbH for providing the TURBOMOLE program package. E. Fabiano acknowledges the partial funding of this work from a CentraleSupélec visiting professorship.


  1. 1.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871. doi: 10.1103/PhysRev.136.B864 CrossRefGoogle Scholar
  2. 2.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  3. 3.
    Scuseria GE, Staroverov VN (2005) Progress in the development of exchange-correlation functionals. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first 40 years (a volume of technical and historical perspectives). Elsevier, Amsterdam, pp 669–724Google Scholar
  4. 4.
    Della Sala F, Fabiano E, Constantin LA (2016) Kinetic-energy-density dependent semilocal exchange-correlation functionals. Int J Quantum Chem 116(22):1641–1694. doi: 10.1002/qua.25224 CrossRefGoogle Scholar
  5. 5.
    Peverati R, Truhlar DG (2014) Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos Trans R Soc Lond A Math Phys Eng Sci 372(2011):20120476. doi: 10.1098/rsta.2012.0476.http://rsta.royalsocietypublishing.org/content/372/2011/20120476, http://rsta.royalsocietypublishing.org/content/372/2011/20120476.full.pdf
  6. 6.
    Yu HS, He X, Truhlar DG (2016) MN15-L: a new local exchange-correlation functional for Kohn–Sham density functional theory with broad accuracy for atoms, molecules, and solids. J Chem Theory Comput 12(3):1280–1293. doi: 10.1021/acs.jctc.5b01082 CrossRefGoogle Scholar
  7. 7.
    Guido CA, Brémond E, Adamo C, Cortona P (2013) Communication: one third: a new recipe for the PBE0 paradigm. J Chem Phys 138(2):021104. doi: 10.1063/1.4775591 CrossRefGoogle Scholar
  8. 8.
    Fabiano E, Constantin LA, Cortona P, Della Sala F (2015) Global hybrids from the semiclassical atom theory satisfying the local density linear response. J Chem Theory Comput 11(1):122–131. doi: 10.1021/ct500902p CrossRefGoogle Scholar
  9. 9.
    Constantin LA, Fabiano E, Della Sala F (2013) Meta-GGA exchange-correlation functional with a balanced treatment of nonlocality. J Chem Theory Comput 9(5):2256–2263. doi: 10.1021/ct400148r CrossRefGoogle Scholar
  10. 10.
    Goerigk L, Grimme S (2011) Efficient and accurate double-hybrid-meta-GGA density functionals evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J Chem Theory Comput 7(2):291–309. doi: 10.1021/ct100466k CrossRefGoogle Scholar
  11. 11.
    Zhao Y, Truhlar DG (2005a) Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. J Phys Chem A 109(25):5656–5667. doi: 10.1021/jp050536c CrossRefGoogle Scholar
  12. 12.
    Zhao Y, Truhlar DG (2005b) Benchmark databases for nonbonded interactions and their use to test density functional theory. J Chem Theory Comput 1(3):415–432. doi: 10.1021/ct049851d CrossRefGoogle Scholar
  13. 13.
    Burns LA, Vázquez-Mayagoitia A, Sumpter BG, Sherrill CD (2011) Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. J Chem Phys 134(8):084107. doi: 10.1063/1.3545971 CrossRefGoogle Scholar
  14. 14.
    Marom N, Tkatchenko A, Rossi M, Gobre VV, Hod O, Scheffler M, Kronik L (2011) Dispersion interactions with density-functional theory: benchmarking semiempirical and interatomic pairwise corrected density functionals. J Chem Theory Comput 7(12):3944–3951. doi: 10.1021/ct2005616 CrossRefGoogle Scholar
  15. 15.
    DiLabio GA, Otero-de-la Roza A (2016) Noncovalent interactions in density functional theory. Wiley, New York. doi: 10.1002/9781119148739.ch1 CrossRefGoogle Scholar
  16. 16.
    Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110(9):5023–5063. doi: 10.1021/cr1000173 CrossRefGoogle Scholar
  17. 17.
    Grimme S (2011) Density functional theory with London dispersion corrections. Wiley Interdiscip Rev Comput Mol Sci 1(2):211–228. doi: 10.1002/wcms.30 CrossRefGoogle Scholar
  18. 18.
    Hermann J, DiStasio RA, Tkatchenko A (2017) First-principles models for van der Waals interactions in molecules and materials: concepts, theory, and applications. Chem Rev 117(6):4714–4758. doi: 10.1021/acs.chemrev.6b00446 CrossRefGoogle Scholar
  19. 19.
    Tkatchenko A (2015) Current understanding of van der waals effects in realistic materials. Adv Funct Mater 25(13):2054–2061. doi: 10.1002/adfm.201403029 CrossRefGoogle Scholar
  20. 20.
    Corminboeuf C (2014) Minimizing density functional failures for non-covalent interactions beyond van der waals complexes. Acc Chem Res 47(11):3217–3224. doi: 10.1021/ar400303a CrossRefGoogle Scholar
  21. 21.
    Wu J, Zhou Y, Xu X (2015) The X1 family of methods that combines B3LYP with neural network corrections for an accurate yet efficient prediction of thermochemistry. Int J Quantum Chem 115(16):1021–1031. doi: 10.1002/qua.24919 CrossRefGoogle Scholar
  22. 22.
    Gao T, Li H, Li W, Li L, Fang C, Li H, Hu L, Lu Y, Su ZM (2016) A machine learning correction for DFT non-covalent interactions based on the S22, S66 and X40 benchmark databases. J Cheminform 8(1):24. doi: 10.1186/s13321-016-0133-7 CrossRefGoogle Scholar
  23. 23.
    Grimme S, Hansen A, Brandenburg JG, Bannwarth C (2016) Dispersion-corrected mean-field electronic structure methods. Chem Rev 116(9):51055154. doi: 10.1021/acs.chemrev.5b00533 CrossRefGoogle Scholar
  24. 24.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1):215–241. doi: 10.1007/s00214-007-0310-x CrossRefGoogle Scholar
  25. 25.
    Goerigk L, Grimme S (2014) Double-hybrid density functionals. Wiley Interdiscip Rev Comput Mol Sci 4(6):576–600. doi: 10.1002/wcms.1193 CrossRefGoogle Scholar
  26. 26.
    Reilly AM, Tkatchenko A (2015) Van der waals dispersion interactions in molecular materials: beyond pairwise additivity. Chem Sci 6:3289–3301. doi: 10.1039/C5SC00410A CrossRefGoogle Scholar
  27. 27.
    Wu Q, Yang W (2002) Empirical correction to density functional theory for van der waals interactions. J Chem Phys 116(2):515–524. doi: 10.1063/1.1424928 CrossRefGoogle Scholar
  28. 28.
    Johnson ER, Becke AD (2005) A post-Hartree–Fock model of intermolecular interactions. J Chem Phys 123(2):024101. doi: 10.1063/1.1949201 CrossRefGoogle Scholar
  29. 29.
    Grimme S (2004) Accurate description of van der waals complexes by density functional theory including empirical corrections. J Comput Chem 25(12):1463–1473. doi: 10.1002/jcc.20078 CrossRefGoogle Scholar
  30. 30.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799. doi: 10.1002/jcc.20495 CrossRefGoogle Scholar
  31. 31.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104. doi: 10.1063/1.3382344 CrossRefGoogle Scholar
  32. 32.
    Tkatchenko A, Scheffler M (2009) Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102:073005. doi: 10.1103/PhysRevLett.102.073005 CrossRefGoogle Scholar
  33. 33.
    Langreth DC, Dion M, Rydberg H, Schrder E, Hyldgaard P, Lundqvist BI (2005) Van der waals density functional theory with applications. Int J Quantum Chem 101(5):599–610. doi: 10.1002/qua.20315 CrossRefGoogle Scholar
  34. 34.
    Vydrov OA, Van Voorhis T (2009) Nonlocal van der waals density functional made simple. Phys Rev Lett 103:063004. doi: 10.1103/PhysRevLett.103.063004 CrossRefGoogle Scholar
  35. 35.
    Vydrov OA, Van Voorhis T (2010) Nonlocal van der waals density functional: the simpler the better. J Chem Phys 133(24):244103. doi: 10.1063/1.3521275 CrossRefGoogle Scholar
  36. 36.
    Hujo W, Grimme S (2011) Performance of the van der waals density functional VV10 and (hybrid)GGA variants for thermochemistry and noncovalent interactions. J Chem Theory Comput 7(12):3866–3871. doi: 10.1021/ct200644w CrossRefGoogle Scholar
  37. 37.
    Jurečka P, Černỳ J, Hobza P, Salahub DR (2007) Density functional theory augmented with an empirical dispersion term. interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. J Comput Chem 28(2):555–569. doi: 10.1002/jcc.20570 CrossRefGoogle Scholar
  38. 38.
    Thanthiriwatte KS, Hohenstein EG, Burns LA, Sherrill CD (2011) Assessment of the performance of DFT and DFT-D methods for describing distance dependence of hydrogen-bonded interactions. J Chem Theory Comput 7(1):88–96. doi: 10.1021/ct100469b CrossRefGoogle Scholar
  39. 39.
    Hujo W, Grimme S (2011) Comparison of the performance of dispersion-corrected density functional theory for weak hydrogen bonds. Phys Chem Chem Phys 13:13942–13950. doi: 10.1039/C1CP20591A CrossRefGoogle Scholar
  40. 40.
    Fabiano E, Constantin LA, Della Sala F (2014) Wave function and density functional theory studies of dihydrogen complexes. J Chem Theory Comput 10(8):3151–3162. doi: 10.1021/ct500350n, pMID: 26588286
  41. 41.
    Roy D, Marianski M, Maitra NT, Dannenberg JJ (2012) Comparison of some dispersion-corrected and traditional functionals with CCSD(T) and MP2 ab initio methods: Dispersion, induction, and basis set superposition error. J Chem Phys 137(13):134109. doi: 10.1063/1.4755990 CrossRefGoogle Scholar
  42. 42.
    Schneebeli ST, Bochevarov AD, Friesner RA (2011) Parameterization of a B3LYP specific correction for noncovalent interactions and basis set superposition error on a gigantic data set of CCSD(T) quality noncovalent interaction energies. J Chem Theory Comput 7(3):658–668. doi: 10.1021/ct100651f CrossRefGoogle Scholar
  43. 43.
    Sedlak R, Janowski T, Pitoňák M, Řezáč J, Pulay P, Hobza P (2013) Accuracy of quantum chemical methods for large noncovalent complexes. J Chem Theory Comput 9(8):3364–3374. doi: 10.1021/ct400036b CrossRefGoogle Scholar
  44. 44.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. doi: 10.1103/PhysRevA.38.3098 CrossRefGoogle Scholar
  45. 45.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi: 10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  46. 46.
    Pernal K, Podeszwa R, Patkowski K, Szalewicz K (2009) Dispersionless density functional theory. Phys Rev Lett 103:263201. doi: 10.1103/PhysRevLett.103.263201 CrossRefGoogle Scholar
  47. 47.
    Tognetti V, Cortona P, Adamo C (2008a) A new parameter-free correlation functional based on an average atomic reduced density gradient analysis. J Chem Phys 128(3):034101. doi: 10.1063/1.2816137 CrossRefGoogle Scholar
  48. 48.
    Tognetti V, Cortona P, Adamo C (2008) Increasing physical constraints and improving performances in a parameter-free GGA functional. Chem Phys Lett 460(46):536–539. doi: 10.1016/j.cplett.2008.06.032. http://www.sciencedirect.com/science/article/pii/S0009261408008464
  49. 49.
    Brémond É, Pilard D, Ciofini I, Chermette H, Adamo C, Cortona P (2012) Generalized gradient exchange functionals based on the gradient-regulated connection: a new member of the TCA family. Theor Chem Acc 131(3):1184. doi: 10.1007/s00214-012-1184-0 CrossRefGoogle Scholar
  50. 50.
    Ragot S, Cortona P (2004) Correlation energy of many-electron systems: a modified Colle–Salvetti approach. J Chem Phys 121(16):7671–7680. doi: 10.1063/1.1792153 CrossRefGoogle Scholar
  51. 51.
    Tognetti V, Cortona P, Adamo C (2007) Chem Phys Lett 439:381CrossRefGoogle Scholar
  52. 52.
    Tognetti V, Adamo C, Cortona P (2007) Chem Phys 337:161CrossRefGoogle Scholar
  53. 53.
    Tognetti V, Cortona P, Adamo C (2009a) Activation enthalpies of pericyclic reactions: the performances of some recently proposed functionals. Theor Chem Acc 122(5):257–264. doi: 10.1007/s00214-008-0503-y CrossRefGoogle Scholar
  54. 54.
    Tognetti V, Joubert L, Cortona P, Adamo C (2009b) Toward a combined DFT/QTAIM description of agostic bonds: the critical case of a Nb(III) complex. J Phys Chem A 113(44):12322–12327. doi: 10.1021/jp9045534 CrossRefGoogle Scholar
  55. 55.
    Tognetti V, Cortona P, Adamo C (2010a) Assessing the performances of some recently proposed density functionals for the description of bond dissociations involving organic radicals. Int J Quantum Chem 110(12):2320–2329. doi: 10.1002/qua.22571 CrossRefGoogle Scholar
  56. 56.
    Tognetti V, Adamo C, Cortona P (2010b) Density-functional calculations for large systems: Can GGA functionals be competitive with hybrid functionals? Interdiscip Sci Comput Life Sci 2(2):163–168. doi: 10.1007/s12539-010-0073-2 CrossRefGoogle Scholar
  57. 57.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi: 10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  58. 58.
    Fabiano E, Constantin LA, Terentjevs A, Della Sala F, Cortona P (2015) Assessment of the TCA functional in computational chemistry and solid-state physics. Theor Chem Acc 134(11):139. doi: 10.1007/s00214-015-1740-5 CrossRefGoogle Scholar
  59. 59.
    Labat F, Brémond E, Cortona P, Adamo C (2013) Assessing modern GGA functionals for solids. J Mol Model 19(7):2791–2796. doi: 10.1007/s00894-012-1646-2 CrossRefGoogle Scholar
  60. 60.
    Cedillo A, Torrent M, Cortona P (2016) Stability of the different AlOOH phases under pressure. J Phys Condens Matter 28(18):185401. http://stacks.iop.org/0953-8984/28/i=18/a=185401
  61. 61.
    Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406. doi: 10.1103/PhysRevLett.100.136406 CrossRefGoogle Scholar
  62. 62.
    Fabiano E, Constantin LA, Della Sala F (2010) Generalized gradient approximation bridging the rapidly and slowly varying density regimes: a PBE-like functional for hybrid interfaces. Phys Rev B 82:113104. doi: 10.1103/PhysRevB.82.113104 CrossRefGoogle Scholar
  63. 63.
    Grüning M, Gritsenko OV, van Gisbergen SJA, Baerends EJ (2001) Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region. J Chem Phys 114(2):652–660. doi: 10.1063/1.1327260 CrossRefGoogle Scholar
  64. 64.
    Zhang Y, Pan W, Yang W (1997) Describing van der waals interaction in diatomic molecules with generalized gradient approximations: The role of the exchange functional. J Chem Phys 107(19):7921–7925. doi: 10.1063/1.475105 CrossRefGoogle Scholar
  65. 65.
    Brémond É, Kalhor MP, Bousquet D, Mignon P, Ciofini I, Adamo C, Cortona P, Chermette H (2013) Assessing the performances of some recently proposed density functionals for the description of organometallic structures. Theor Chem Acc 132(12):1401. doi: 10.1007/s00214-013-1401-5 CrossRefGoogle Scholar
  66. 66.
    Cooper V (2010) Van der waals density functional: an appropriate exchange functional. Phys Rev B 81:161104(R). doi: 10.1103/PhysRevB.81.161104 CrossRefGoogle Scholar
  67. 67.
    Jurečka P, Şponer J, Černý J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, dna base pairs, and amino acid pairs. Phys Chem Chem Phys 8:1985–1993. doi: 10.1039/B600027D CrossRefGoogle Scholar
  68. 68.
    Marshall MS, Burns LA, Sherrill CD (2011) Basis set convergence of the coupled-cluster correction, MP2CCSD(T): best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases. J Chem Phys 135(19):194102. doi: 10.1063/1.3659142 CrossRefGoogle Scholar
  69. 69.
    Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100(8):5829–5835. doi: 10.1063/1.467146 CrossRefGoogle Scholar
  70. 70.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. doi: 10.1039/B508541A CrossRefGoogle Scholar
  71. 71.
    Aragó J, Ortí E, Sancho-García JC (2013) Nonlocal van der waals approach merged with double-hybrid density functionals: toward the accurate treatment of noncovalent interactions. J Chem Theory Comput 9(8):3437–3443. doi: 10.1021/ct4003527 CrossRefGoogle Scholar
  72. 72.
    TURBOMOLE (2017) TURBOMOLE, V7.0; TURBOMOLE GmbH: Karlsruhe, Germany, 2011. http://www.turbomole.com. Accessed Mar 2017
  73. 73.
    Furche F, Ahlrichs R, Hättig C, Klopper W, Sierka M, Weigend F (2014) Turbomole. Wiley Interdiscip Rev Comput Mol Sci 4(2):91–100. doi: 10.1002/wcms.1162 CrossRefGoogle Scholar
  74. 74.
    Rappoport D, Furche F (2010) Property-optimized gaussian basis sets for molecular response calculations. J Chem Phys 133(13):134105. doi: 10.1063/1.3484283 CrossRefGoogle Scholar
  75. 75.
    Řezáč J, Riley KE, Hobza P (2011) S66: a well-balanced database of benchmark interaction energies relevant to biomolecular structures. J Chem Theory Comput 7(8):2427–2438. doi: 10.1021/ct2002946 CrossRefGoogle Scholar
  76. 76.
    Lynch BJ, Truhlar DG (2003) Small representative benchmarks for thermochemical calculations. J Phys Chem A 107(42):8996–8999. doi: 10.1021/jp035287b CrossRefGoogle Scholar
  77. 77.
    Haunschild R, Klopper W (2012) Theoretical reference values for the AE6 and BH6 test sets from explicitly correlated coupled-cluster theory. Theor Chem Acc 131(2):1112. doi: 10.1007/s00214-012-1112-3 CrossRefGoogle Scholar
  78. 78.
    Lynch BJ, Truhlar DG (2003) Robust and affordable multicoefficient methods for thermochemistry and thermochemical kinetics: the MCCM/3 suite and SAC/3. J Phys Chem A 107(19):3898–3906. doi: 10.1021/jp0221993 CrossRefGoogle Scholar
  79. 79.
    Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125(19):194101. doi: 10.1063/1.2370993 CrossRefGoogle Scholar
  80. 80.
    Gráfová L, Pitoňák M, Řezáč J, Hobza P (2010) Comparative study of selected wave function and density functional methods for noncovalent interaction energy calculations using the extended s22 data set. J Chem Theory Comput 6(8):2365–2376. doi: 10.1021/ct1002253. pMID: 26613492

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute for Microelectronics and Microsystems (CNR-IMM)LecceItaly
  2. 2.Center for Biomolecular Nanotechnologies @UNILEIstituto Italiano di TecnologiaArnesanoItaly
  3. 3.Laboratoire Structures, Propriétés et Modélisation des Solides, CNRS UMR 8580Université Paris-Saclay, CentraleSupélecChâtenay-MalabryFrance

Personalised recommendations