Advertisement

Structural effects in octahedral carbonyl complexes: an atoms-in-molecules study

  • Vincent TognettiEmail author
  • Frédéric Guégan
  • Dominique Luneau
  • Henry Chermette
  • Christophe Morell
  • Laurent Joubert
Regular Article
Part of the following topical collections:
  1. First European Symposium on Chemical Bonding

Abstract

In this paper, we assess the ability of descriptors defined within the framework of the quantum theory of atoms-in-molecules to retrieve trans and cis structural effects in 42 d 6 octahedral carbonyl organometallic complexes involving cobalt and rhodium atoms. More specifically, correlations between bond lengths in trans or cis position with respect to common orienting ligands and both local (such as molecular electrostatic potential values or the properties of critical points of the electron density Laplacian field) and integrated (over the metal atomic basin, such as multipolar moments, various energy contributions, condensed conceptual DFT quantities) properties are investigated, casting some light on the physicochemical features that drive this fundamental structural effect.

Keywords

Quantum theory of atoms-in-molecules (QTAIM) Carbonyl complexes Trans effect Cis effect Metal–ligand bonds Atomic descriptors Energy decompositions Conceptual DFT 

Notes

Acknowledgements

We gratefully acknowledge the CRIANN computational center for providing HPC resources, and LABEX SynOrg for support. VT thanks the Centre National de la Recherche Scientifique (CNRS) for a half-time “délégation”.

Supplementary material

214_2017_2116_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1784 kb)

References

  1. 1.
    Chernayev II (1926) Ann Inst Platine 4:243–275Google Scholar
  2. 2.
    Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry: principles of structure and reactivity, 4th edn. New York, Harper CollinsGoogle Scholar
  3. 3.
    Shriver DF, Atkins PW, Langford CH (1994) Inorganic chemistry, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Burdett JK, Albright TA (1979) Inorg Chem 18:2112–2120CrossRefGoogle Scholar
  5. 5.
    Atwood JD, Brown TL (1976) J Am Chem Soc 98:3160–3166CrossRefGoogle Scholar
  6. 6.
    Otto S, Roodt A (2004) Inorg Chim Acta 357:1–10CrossRefGoogle Scholar
  7. 7.
    Kovacs A, Frenking G (2001) Organometallics 20:2510–2524CrossRefGoogle Scholar
  8. 8.
    Quagliano JV, Schubert L (1952) Chem Rev 50:201–266CrossRefGoogle Scholar
  9. 9.
    Coe BJ, Glenwright SJ (2000) Coord Chem Rev 203:5–80CrossRefGoogle Scholar
  10. 10.
    Krogh-Jespersen K, Romanelli MD, Melman JH, Emge TJ, Brennan JG (2010) Inorg Chem 49:552–560CrossRefGoogle Scholar
  11. 11.
    Chermette H, Rachedi K, Volatron F (2006) J Mol Struct Theochem 762:109–121CrossRefGoogle Scholar
  12. 12.
    Lewis AJ, Mullane KC, Nakamaru-Ogiso E, Carroll PJ, Schelter JE (2014) Inorg Chem 53:6944–6953CrossRefGoogle Scholar
  13. 13.
    Tognetti V, Boulangé A, Peixoto PA, Franck X, Joubert L (2014) J Mol Model 20:2342CrossRefGoogle Scholar
  14. 14.
    Sajith PK, Suresh CH (2012) Inorg Chem 51:967–977CrossRefGoogle Scholar
  15. 15.
    Jia Y-X, Li B-B, Li Y, Pullarkat SA, Hirao H, Leung P-H (2014) Organometallics 53:6053–6058CrossRefGoogle Scholar
  16. 16.
    Zhang G, Chen K, Chen H, Yao J, Shaik S (2013) Inorg Chem 52:5088–5096CrossRefGoogle Scholar
  17. 17.
    Kwak J, Ohk Y, Jung Y, Chang S (2012) J Am Chem Soc 134:17778–17788CrossRefGoogle Scholar
  18. 18.
    Robert F, Milet A, Gimbert Y, Konya D, Green AE (2001) J Am Chem Soc 123:5396–5400CrossRefGoogle Scholar
  19. 19.
    Tognetti V, Buchard A, Auffrant A, Ciofini I, Le Floch P, Adamo C (2013) J Mol Model 19:2107–2118CrossRefGoogle Scholar
  20. 20.
    Hunt AP, Lehnert N (2015) Acc Chem Res 48:2117–2125CrossRefGoogle Scholar
  21. 21.
    Lieb D, Friedel FC, Yawer M, Zahl A, Khusniyarov MM, Heinemann FW, Ivanovic-Burmazovic I (2012) Inorg Chem 52:222–236CrossRefGoogle Scholar
  22. 22.
    Dolker N, Maseras F, Lledos A (2003) J Phys Chem B 107:306–315CrossRefGoogle Scholar
  23. 23.
    Czarnecki K, Nimri S, Gross Z, Proniewicz LM, Kincald JR (1996) J Am Chem Soc 118:2929–2935CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Guo Z, You X-Z (2001) J Am Chem Soc 123:9378–9387CrossRefGoogle Scholar
  25. 25.
    Baik M-H, Friesner RA, Lippard SJ (2003) J Am Chem Soc 125:14082–14092CrossRefGoogle Scholar
  26. 26.
    Raber J, Zhu C, Eriksson LA (2005) J Phys Chem B 109:11006–11015CrossRefGoogle Scholar
  27. 27.
    Chernayev II (1927) Ann Inst Platine 5:109Google Scholar
  28. 28.
    Grinberg AA (1932) Ann Inst Platine 10:58Google Scholar
  29. 29.
    Grinberg AA (1935) Acta Phys Chim 3:573Google Scholar
  30. 30.
    La Pierre HS, Rosenzweig M, Kosog B, Hauser C, Heinemann FW, Liddle ST, Meyer K (2015) Chem Commun 51:16671–16674CrossRefGoogle Scholar
  31. 31.
    Chatt J, Duncanson LA (1953) J Chem Soc 2939–2947Google Scholar
  32. 32.
    Dewar MJS (1951) Bull Soc Chim Fr 18:C71Google Scholar
  33. 33.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873CrossRefGoogle Scholar
  34. 34.
    Chermette H (1999) J Comput Chem 20:129–154CrossRefGoogle Scholar
  35. 35.
    Popelier PLA, Aicken FM (2003) ChemPhysChem 4:824–829CrossRefGoogle Scholar
  36. 36.
    Popelier PLA (2005) In: Wales DJ (ed) Structure and bonding. Intermolecular forces and clusters, vol 115. Springer, Berlin, pp 1–56CrossRefGoogle Scholar
  37. 37.
    Pinter B, Van Speybroeck V, Waroquier M, Geerlings P, De Proft F (2013) Phys Chem Chem Phys 15:17354–17365CrossRefGoogle Scholar
  38. 38.
    Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205–212CrossRefGoogle Scholar
  39. 39.
    Tognetti V, Morell C, Ayers PW, Joubert L, Chermette H (2013) Phys Chem Chem Phys 15:14465–14475CrossRefGoogle Scholar
  40. 40.
    Guégan F, Tognetti V, Joubert L, Chermette H, Luneau D, Morell C (2016) Phys Chem Chem Phys 18:982–990CrossRefGoogle Scholar
  41. 41.
    Tognetti V, Morell C, Joubert L (2015) J Comput Chem 36:648–659CrossRefGoogle Scholar
  42. 42.
    Bader RFW (1990) Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford/New YorkGoogle Scholar
  43. 43.
    Popelier PLA (2000) Atoms in Molecules An Introduction; Pearson Education: Harlow. Essex, UKGoogle Scholar
  44. 44.
    Willner H, Bach C, Wartchow R, Wang C, Trotter SJ, Jonas V, Thiel W, Aubke F (2000) Inorg Chem 39:1933–1942CrossRefGoogle Scholar
  45. 45.
    Ehlers AW, Dapprich S, Vyboishchikov SF, Frenking G (1996) Organometallics 15:105–117CrossRefGoogle Scholar
  46. 46.
    Cortés-Guzman F, Bader RFW (2005) Coord Chem Rev 249(633–662):2005Google Scholar
  47. 47.
    Tiana D, Francisco E, Blanco MA, Macchi P, Sironi A, Pendás AM (2010) J Chem Theory Comput 6:1064–1074CrossRefGoogle Scholar
  48. 48.
    Tiana D, Francisco E, Blanco MA, Macchi P, Sironi A, Pendás AM (2011) Phys Chem Chem Phys 13:5068–5077CrossRefGoogle Scholar
  49. 49.
    Pilmé J, Silvi B, Alikhani ME (2003) J Phys Chem A 107:4506–4514CrossRefGoogle Scholar
  50. 50.
    Frenking G, Fröhlich N (2000) Chem Rev 100:717–774CrossRefGoogle Scholar
  51. 51.
    Murray JS, Politzer P (2011) WIREs Comput Mol Sci 1:153–163CrossRefGoogle Scholar
  52. 52.
    Politzer P, Murray JS (2002) Theor Chem Acc 108:134–142CrossRefGoogle Scholar
  53. 53.
    Guégan F, Mignon P, Tognetti V, Joubert L, Morell C (2014) Phys Chem Chem Phys 16:15558–15569CrossRefGoogle Scholar
  54. 54.
    Huang Y, Liu L, Liu S (2012) Chem Phys Lett 527:73–78CrossRefGoogle Scholar
  55. 55.
    Zielinski F, Tognetti V, Joubert L (2013) J Mol Model 19:4049–4058CrossRefGoogle Scholar
  56. 56.
    Kumar A, Gadre SR (2016) J Chem Theory Comput 12:1705–1713CrossRefGoogle Scholar
  57. 57.
    Popelier PLA (2000) Coord Chem Rev 197:169–189CrossRefGoogle Scholar
  58. 58.
    Lin Z, Hall MB (1991) Inorg Chem 30:646–651CrossRefGoogle Scholar
  59. 59.
    Abramov YA, Brammer L, Klooster WT, Morris Bullock R (1998) Inorg Chem 37:6317–6328CrossRefGoogle Scholar
  60. 60.
    Tafilpolsky M, Scherer W, Öfele K, Artus G, Pedersen B, Hermann WA, McGrady S (2002) J Am Chem Soc 124:5865–5880CrossRefGoogle Scholar
  61. 61.
    Farrugia LJ, Middlemis DS, Sillanpää R, Seppälä P (2008) J Phys Chem A 112:9050–9067CrossRefGoogle Scholar
  62. 62.
    Domagała S, Korybut-Daszkiewicz B, Straver L, Woz ́niak K (2009) Inorg Chem 48:4010–4020CrossRefGoogle Scholar
  63. 63.
    Farrugia LJ, Evans C, Lentz D, Roemer M (2009) J Am Chem Soc 131:1251–1268CrossRefGoogle Scholar
  64. 64.
    Farrugia LJ, Evans C, Senn HM, Hänninen MM, Sillanpää R (2012) Organometallics 31:2559–2570CrossRefGoogle Scholar
  65. 65.
    Cremer D, Kraka E (1984) Angew Chem Int Ed 23:627–628CrossRefGoogle Scholar
  66. 66.
    Bader RFW, Matta CF (2004) J Phys Chem A 108:8385–8394CrossRefGoogle Scholar
  67. 67.
    Matta CF, Sowlati-Hashjin S, Bandrauk AD (2013) J Phys Chem A 117:7468–7483CrossRefGoogle Scholar
  68. 68.
    Tognetti V, Joubert L (2013) Chem Phys Lett 557:150–153CrossRefGoogle Scholar
  69. 69.
    Tognetti V, Joubert L (2016) Theor Chem Acc 135:124CrossRefGoogle Scholar
  70. 70.
    Laidig KE, Bader RFW (1990) J Chem Phys 93:7213–7224CrossRefGoogle Scholar
  71. 71.
    Bader RFW, Keith TA (1993) J Chem Phys 99:3683–3693CrossRefGoogle Scholar
  72. 72.
    Dos Santos LHR, Krawcuzk A, Macchi P (2015) J Phys Chem A 119:3285–3298CrossRefGoogle Scholar
  73. 73.
    Krawczuk-Pantula A, Pérez D, Macchi P (2012) Trans Amer Cryst Ass 42:1–25Google Scholar
  74. 74.
    Matta CF (2009) J Comput Chem 31:1297–1311Google Scholar
  75. 75.
    Matta CF, Arabi AA, Keith TA (2007) J Phys Chem A 111:8864–8872CrossRefGoogle Scholar
  76. 76.
    Patrikeev L, Joubert L, Tognetti V (2016) Mol Phys 114:1285–1296CrossRefGoogle Scholar
  77. 77.
    Pendás AM, Blanco MA, Francisco E (2004) J Chem Phys 120:4581–4592CrossRefGoogle Scholar
  78. 78.
    Blanco MA, Pendás AM, Francisco E (2005) J Chem Theory Comput 1:1096–1109CrossRefGoogle Scholar
  79. 79.
    Pendás AM, Blanco MA, Francisco E (2006) J Chem Theory Comput 2:90–102CrossRefGoogle Scholar
  80. 80.
    Tognetti V, Joubert L (2014) Phys Chem Chem Phys 16:14539–14550CrossRefGoogle Scholar
  81. 81.
    Syzgantseva OA, Tognetti V, Joubert L (2013) J Phys Chem A 117:8969–8980CrossRefGoogle Scholar
  82. 82.
    Tognetti V, Joubert L (2013) J Chem Phys 138:024102CrossRefGoogle Scholar
  83. 83.
    Yahia-Ouahmed M, Tognetti V, Joubert L (2015) Comput Theor Chem 1053:254–262CrossRefGoogle Scholar
  84. 84.
    Yahia-Ouahmed M, Tognetti V, Joubert L (2016) Theor Chem Acc 135:45CrossRefGoogle Scholar
  85. 85.
    Tognetti V, Joubert L (2016) Following halogen bonds formation with Bader’s atoms-in-molecules theory. In: Chauvin R et al (eds) Challenges and advances in computational chemistry and physics, vol 22. Springer, Berlin, pp 435–459Google Scholar
  86. 86.
    Fradera X, Austen MA, Bader RFW (1999) J Phys Chem A 103:304–314CrossRefGoogle Scholar
  87. 87.
    Wang Y-G, Matta CF, Werstiuk NH (2003) J Comput Chem 24:1720–1729CrossRefGoogle Scholar
  88. 88.
    Poater J, Solà M, Duran M, Fradera X (2002) Theor Chem Acc 107:362–371CrossRefGoogle Scholar
  89. 89.
    Bader RFW, Popelier PLA (1993) Int J Quantum Chem 45:189–207CrossRefGoogle Scholar
  90. 90.
    Arabi AA, Matta CF (2009) J Phys Chem A 113:3360–3368CrossRefGoogle Scholar
  91. 91.
    Albrecht L, Boyd RJ (2012) J Phys Chem A 116:3946–3951CrossRefGoogle Scholar
  92. 92.
    Matta CF, Sadjadi SA, Braden DA, Frenking G (2016) J Comput Chem 37:143–154CrossRefGoogle Scholar
  93. 93.
    Tognetti V, Morell C, Joubert L (2015) Chem Phys Lett 635:111–115CrossRefGoogle Scholar
  94. 94.
    Borgo A, Tozer DJ (2013) J Chem Theory Comput 9:2250–2255CrossRefGoogle Scholar
  95. 95.
    Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050CrossRefGoogle Scholar
  96. 96.
    Ayers PW, Yang W, Bartolotti L (2009) The Fukui Function. In: Chattaraj P (ed) Chemical reactivity theory: a density functional view. Taylor and Francis, Boca RatonGoogle Scholar
  97. 97.
    Bultinck P, Fias S, Van Alsenoy C, Ayers PW, Carbó-Dorca R (2007) J Chem Phys 127:034102CrossRefGoogle Scholar
  98. 98.
    Zielinski F, Tognetti V, Joubert L (2012) Chem Phys Lett 527:67–72CrossRefGoogle Scholar
  99. 99.
    Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711CrossRefGoogle Scholar
  100. 100.
    Padmanabhan J, Parthasarathi R, Elango M, Subramanian V, Krishnamoorthy BS, Gutierrez-Oliva S, Toro-Labbé A, Roy DR, Chattaraj PK (2007) J Phys Chem A 111:9130–9138CrossRefGoogle Scholar
  101. 101.
    Morell C, Gázquez JL, Vela A, Guégan F, Chermette H (2014) Phys Chem Chem Phys 16:26832–26842CrossRefGoogle Scholar
  102. 102.
    Parr RG, von Szentpály L, Liu S (1999) J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  103. 103.
    Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065–2091CrossRefGoogle Scholar
  104. 104.
    Mussard B, Ángyán JG (2015) Comput Theor Chem 1053:44–52CrossRefGoogle Scholar
  105. 105.
    Geerlings P, Fias S, Boisdenghien Z, De Proft F (2014) Chem Soc Rev 43:4989–5008CrossRefGoogle Scholar
  106. 106.
    Boisdenghien Z, Van Alsenoy C, De Proft F, Geerlings P (2013) J Chem Theory Comput 9:1007–1015CrossRefGoogle Scholar
  107. 107.
    Fias S, Boisdenghien Z, Stuyver T, Audiffred M, Merino G, Geerlings P, De Proft F (2013) J Phys Chem A 117:3556–3560CrossRefGoogle Scholar
  108. 108.
    Sablon N, De Proft F, Geerlings P (2010) J Phys Chem Lett 1:1228–1234CrossRefGoogle Scholar
  109. 109.
    Sablon N, De Proft F, Geerlings P (2010) Chem Phys Lett 498:192–197CrossRefGoogle Scholar
  110. 110.
    Sablon N, De Proft F, Solà M, Geerlings P (2012) Phys Chem Chem Phys 14:3960–3967CrossRefGoogle Scholar
  111. 111.
    Ayers PW (2007) Faraday Discuss 135:161–190CrossRefGoogle Scholar
  112. 112.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE et al (2013) Gaussian 09, revision D.01. Gaussian Inc., Wallingford CTGoogle Scholar
  113. 113.
    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  114. 114.
    Bühl M, Reimann C, Pantazis DA, Bredow T, Neese F (2008) J Chem Theory Comput 4:1449–1459CrossRefGoogle Scholar
  115. 115.
    Keith TA (2016) AIMAll (Version 15.09.12), TK Gristmill Software, Overland Park KS, USA, (aim.tkgristmill.com)Google Scholar
  116. 116.
    Keith TA, Frisch MJ (2011) J Phys Chem A 115:12879–12894CrossRefGoogle Scholar
  117. 117.
    Melin J, Ayers PW, Ortiz JV (2007) J Phys Chem A 111:10017–10019CrossRefGoogle Scholar
  118. 118.
    Ayers PW (2006) Phys Chem Chem Phys 8:3387–3390CrossRefGoogle Scholar
  119. 119.
    Echegaray E, Cárdenas C, Rabi S, Rabi N, Lee S, Zadeh FH, Toro-Labbé A, Anderson JSM, Ayers PW (2013) J Mol Model 19:2779–2783CrossRefGoogle Scholar
  120. 120.
    Echegaray E, Rabi S, Cárdenas C, Zadeh FH, Rabi N, Lee L, Anderson JSM, Toro-Labbé A, Ayers PW (2014) J Mol Model 20:2162CrossRefGoogle Scholar
  121. 121.
    Michalak A, Mitoraj M, Ziegler T (2008) J Phys Chem A 112:1933–1939CrossRefGoogle Scholar
  122. 122.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296CrossRefGoogle Scholar
  123. 123.
    Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729CrossRefGoogle Scholar
  124. 124.
    Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  125. 125.
    Clark T (2013) WIREs Comp Mol Sci 3:13–20CrossRefGoogle Scholar
  126. 126.
    Tognetti V, Joubert L (2015) Theor Chem Acc 134:90CrossRefGoogle Scholar
  127. 127.
    Duarte DJR, Angelina EL, Peruchena NM (2012) Comput Theor Chem 998:164–172CrossRefGoogle Scholar
  128. 128.
    Eskanderi K, Zariny H (2010) Chem Phys Lett 492:9–13CrossRefGoogle Scholar
  129. 129.
    Anderson JMS, Melin J, Ayers PW (2007) J Chem Theory Comput 3:358–374CrossRefGoogle Scholar
  130. 130.
    Wachters AJH (1970) J Chem Phys 52:1033–1036CrossRefGoogle Scholar
  131. 131.
    Bühl M, Kabrede H (2006) J Chem Theory Comput 2:1282–1290CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Vincent Tognetti
    • 1
    Email author
  • Frédéric Guégan
    • 2
    • 3
  • Dominique Luneau
    • 3
  • Henry Chermette
    • 2
  • Christophe Morell
    • 2
  • Laurent Joubert
    • 1
  1. 1.Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRARouenFrance
  2. 2.Institut des Sciences Analytiques, UMR 5280, CNRS, Université Claude Bernard Lyon 1Université de LyonVilleurbanneFrance
  3. 3.Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1Université de LyonVilleurbanneFrance

Personalised recommendations