Advertisement

Theoretical insights into the structural, electronic and optical properties of benzotrithiophene-based hole-transporting materials

  • Joaquín Calbo
  • Rafael Viruela
  • Juan AragóEmail author
  • Enrique OrtíEmail author
Regular Article
Part of the following topical collections:
  1. 10th Congress on Electronic Structure: Principles and Applications (ESPA-2016)

Abstract

This work presents an analysis of the evolution of the structural, electronic and optical properties of a series of benzotrithiophene (BTT) derivatives, decorated with peripheral electron-donor bulky groups, with potential as hole-transporting materials (HTMs) in perovskite solar cells. The analysis is performed on the basis of density functional theory calculations. Theoretical calculations show that the bulky p-methoxydiphenylamine (OMeDPA) and p-methoxydiphenylamine-substituted carbazole (OMeDPAC) groups give rise to highly congested molecular structures. In contrast, the incorporation of p-methoxytriphenylamine (OMeTPA) groups leads to an almost planar structure that is suited for an optimal stacking aggregation with beneficial implications in the charge transport and in the performance of the photovoltaic device. The electronic properties calculated for neutral and cation species reveal the good electron-donor behavior of the BTT derivatives. The small reorganization energies calculated for the BTT derivatives are similar to those reported for other excellent HTMs and support the potential of the sulfur-rich BTT core to design new π-conjugated HTMs. Calculations properly account for the changes observed in the absorption spectra of the BTT derivatives as a function of the peripheral groups attached. Whereas the OMeDPA and OMeTPA groups produce an intensity increase and a red shift of the main absorption band, the OMeDPAC group shifts this band to the blue.

Keywords

Hole-transporting materials Benzotrithiophene derivatives Reorganization energies Electronic structure Density functional theory calculations 

Notes

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competitiveness MINECO (CTQ2015-71154-P and Unidad de Excelencia María de Maeztu MDM-2015-0538), the Generalitat Valenciana (PROMETEO/2016/135) and European FEDER funds (CTQ2015-71154-P). J.A. is grateful to MINECO for a “JdC-incorporación” postdoctoral fellowship. J.C. acknowledges the Ministerio de Educación, Cultura y Deporte (MECD) of Spain for a predoctoral FPU grant.

Supplementary material

214_2017_2100_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1956 kb)

References

  1. 1.
    N. R. E. L. National Renewable Energy Laboratory (2016)Google Scholar
  2. 2.
    Hsiao Y-C, Wu T, Li M, Liu Q, Qin W, Hu B (2015) J Mater Chem A 3:15372CrossRefGoogle Scholar
  3. 3.
    Motta C, El-Mellouhi F, Sanvito S (2015) Sci Rep 5:12746CrossRefGoogle Scholar
  4. 4.
    Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Science 342:341CrossRefGoogle Scholar
  5. 5.
    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J (2015) Science 347:967CrossRefGoogle Scholar
  6. 6.
    Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ (2014) Energy Environ Sci 7:982CrossRefGoogle Scholar
  7. 7.
    Noh JH, Im SH, Heo JH, Mandal TN, Seok SII (2013) Nano Lett 13:1764CrossRefGoogle Scholar
  8. 8.
    Liang P-W, Chueh C-C, Williams ST, Jen AK-Y (2015) Adv Energy Mater 5:1402321CrossRefGoogle Scholar
  9. 9.
    Calió L, Kazim S, Grätzel M, Ahmad S (2016) Angew Chemie Int Ed 55:14522CrossRefGoogle Scholar
  10. 10.
    Teh CH, Daik R, Lim EL, Yap CC, Ibrahim MA, Ludin NA, Sopian K, Mat Teridi MA (2016) J Mater Chem A 4:15788CrossRefGoogle Scholar
  11. 11.
    Zhou H, Chen Q, Li G, Luo S, Song T, Duan H-S, Hong Z, You J, Liu Y, Yang Y (2014) Science 345:542CrossRefGoogle Scholar
  12. 12.
    Zimmermann I, Urieta-Mora J, Gratia P, Aragó J, Grancini G, Molina-Ontoria A, Ortí E, Martín N, Nazeeruddin MK (2017) Adv Energy Mater 7:1601674CrossRefGoogle Scholar
  13. 13.
    Saliba M, Orlandi S, Matsui T, Aghazada S, Cavazzini M, Correa-Baena J-P, Gao P, Scopelliti R, Mosconi E, Dahmen K-H, De Angelis F, Abate A, Hagfeldt A, Pozzi G, Graetzel M, Nazeeruddin MK (2016) Nat Energy 1:15017CrossRefGoogle Scholar
  14. 14.
    Molina-Ontoria A, Zimmermann I, Garcia-Benito I, Gratia P, Roldán-Carmona C, Aghazada S, Graetzel M, Nazeeruddin MK, Martín N (2016) Angew Chemie Int Ed 55:6270CrossRefGoogle Scholar
  15. 15.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Fox DJ, et al (2009) Gaussian 09. Revision D01. Gaussian, Inc, WallingfordGoogle Scholar
  16. 16.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  17. 17.
    Becke A (1993) J Chem Phys 6:5648CrossRefGoogle Scholar
  18. 18.
    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople J (1982) J Chem Phys 77:3654CrossRefGoogle Scholar
  19. 19.
    Tomasi J, Persico M (1994) Chem Rev 94:2027CrossRefGoogle Scholar
  20. 20.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999CrossRefGoogle Scholar
  21. 21.
    Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439CrossRefGoogle Scholar
  22. 22.
    Jamorski C, Casida M, Salahub D (1996) J Chem Phys 104:5134CrossRefGoogle Scholar
  23. 23.
    Petersilka M, Gossmann U, Gross E (1996) Phys Rev Lett 76:1212CrossRefGoogle Scholar
  24. 24.
    Casida ME (2009) J Mol Struct THEOCHEM 914:3CrossRefGoogle Scholar
  25. 25.
    Tozer DJ, Amos RD, Handy NC, Roos BO, Serrano-Andres L (1999) Mol Phys 97:859CrossRefGoogle Scholar
  26. 26.
    Dreuw A, Weisman JL, Head-Gordon M (2003) J Chem Phys 119:2943CrossRefGoogle Scholar
  27. 27.
    Dreuw A, Head-Gordon M (2004) J Am Chem Soc 126:4007CrossRefGoogle Scholar
  28. 28.
    Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) J Chem Phys 128:44118CrossRefGoogle Scholar
  29. 29.
    Le Bahers T, Adamo C, Ciofini I (2011) J Chem Theory Comput 7:2498CrossRefGoogle Scholar
  30. 30.
    Etienne T, Assfeld X, Monari A (2014) J Chem Theory Comput 10:3896CrossRefGoogle Scholar
  31. 31.
    Etienne T (2015) J Chem Phys 142:244103CrossRefGoogle Scholar
  32. 32.
    Etienne T, Assfeld X, Monari A (2014) J Chem Theory Comput 10:3906CrossRefGoogle Scholar
  33. 33.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51CrossRefGoogle Scholar
  34. 34.
    Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4971CrossRefGoogle Scholar
  35. 35.
  36. 36.
    Aragó J, Viruela PM, Gierschner J, Ortí E, Milián-Medina B (2011) Phys Chem Chem Phys 13:1457CrossRefGoogle Scholar
  37. 37.
    García-Benito I, Zimmermann I, Urieta-Mora J, Aragó J, Molina-Ontoria A, Ortí E, Martín N, Nazeeruddin MK (2017) J Mater Chem A 5:8317CrossRefGoogle Scholar
  38. 38.
    Yao Y, Dong H, Hu W (2016) Adv Mater 28:4513CrossRefGoogle Scholar
  39. 39.
    Sokolov AN, Atahan-Evrenk S, Mondal R, Akkerman HB, Sánchez-Carrera RS, Granados-Focil S, Schrier J, Mannsfeld SCB, Zoombelt AP, Bao Z, Aspuru-Guzik A (2011) Nat Commun 2:437CrossRefGoogle Scholar
  40. 40.
    Taerum T, Lukoyanova O, Wylie RG, Perepichka DF (2009) Org Lett 11:3230CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Instituto de Ciencia MolecularUniversidad de ValenciaPaternaSpain

Personalised recommendations