A theoretical study of the H n F4−n Si:N-base (n = 1–4) tetrel-bonded complexes

  • Marta Marín-LunaEmail author
  • Ibon AlkortaEmail author
  • José Elguero
Regular Article
Part of the following topical collections:
  1. 10th Congress on Electronic Structure: Principles and Applications (ESPA-2016)


Tetrel-bonded complexes of H n F4−n Si with a N-base for n = 0–4 were explored by MP2 calculations. Configurations with H–Si···N and F–Si···N linear or nearly linear alignment in complexes were considered. Nine sp 3 hybridized nitrogen bases NH3, NH2Cl, NH2F, NHCl2, NCl3, NFCl2, NHF2, NF2Cl, NF3 and nine sp ones NCNH2, NCCH3, NCOH, NP, NCCl, NCH, NCF, NCCN, N2 have been studied. It is shown that binding energies of the complexes depend strongly on the nature of the base involved in the complex. Complexes with NH3 bases present the highest binding energies. In the stronger complexes, the silicon molecules suffer important geometrical distortions. NBO and AIM methodologies have been applied in order to describe properly the intermolecular Si···N contact. F atoms in equatorial position at silicon acid provoke a deviation from linearity of the Si···N electron density bond path trajectory.


Tetrel bond σ-Hole Nitrogen bases Fluorosilanes MP2 calculations 



This work was carried out with financial support from the Ministerio de Economía y Competitividad (Project No. CTQ2015-63997-C2-2-P) and Comunidad Autónoma de Madrid (Project FOTOCARBON, ref S2013/MIT-2841). Computer, storage and other resources from the CTI (CSIC) are gratefully acknowledged.

Supplementary material

214_2017_2069_MOESM1_ESM.doc (5.9 mb)
Supplementary material 1 (DOC 6013 kb)


  1. 1.
    Lehn J-M (2002) Science (Washington, DC, USA) 295(5564):2400CrossRefGoogle Scholar
  2. 2.
    Badjic JD, Nelson A, Cantrill SJ, Turnbull WB, Stoddart JF (2005) Acc Chem Res 38(9):723CrossRefGoogle Scholar
  3. 3.
    Yeagle PL (2014) Biochim Biophys Acta Biomembr 1838(6):1548CrossRefGoogle Scholar
  4. 4.
    Cerny J, Hobza P (2007) Phys Chem Chem Phys 9(39):5291CrossRefGoogle Scholar
  5. 5.
    Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed Engl 34(15):1555CrossRefGoogle Scholar
  6. 6.
    Prins LJ, Reinhoudt DN, Timmerman P (2001) Angew Chem Int Ed 40(13):2382CrossRefGoogle Scholar
  7. 7.
    Steiner T (2002) Angew Chem Int Ed 41(1):48CrossRefGoogle Scholar
  8. 8.
    Grabowski SE (2006) Hydrogen bonding—new insights. Challenges and advances in computational chemistry and physics, vol 3. Springer Netherlands, AmsterdamGoogle Scholar
  9. 9.
    Singh SK, Das A (2015) Phys Chem Chem Phys 17(15):9596CrossRefGoogle Scholar
  10. 10.
    Schreiner PR, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausmann H, Serafin M, Schlecht S, Dahl JEP, Carlson RMK, Fokin AA (2011) Nature (London, UK) 477(7364):308CrossRefGoogle Scholar
  11. 11.
    Murray JS, Lane P, Politzer P (2009) J Mol Model 15(6):723CrossRefGoogle Scholar
  12. 12.
    Murray JS, Riley KE, Politzer P, Clark T (2010) Aust J Chem 63(12):1598CrossRefGoogle Scholar
  13. 13.
    Politzer P, Murray JS, Concha MC (2008) J Mol Model 14(8):659CrossRefGoogle Scholar
  14. 14.
    Politzer P, Murray JS, Clark T (2013) PCCP 15(27):11178CrossRefGoogle Scholar
  15. 15.
    Azofra LM, Scheiner S (2015) J Chem Phys 142(3):034307CrossRefGoogle Scholar
  16. 16.
    Bauzá A, Mooibroek TJ, Frontera A (2013) Angew Chem Int Ed 52(47):12317CrossRefGoogle Scholar
  17. 17.
    Grabowski SJ (2014) PCCP 16(5):1824CrossRefGoogle Scholar
  18. 18.
    Del Bene JE, Alkorta I, Elguero J (2015) The pnicogen bond in review: structures, binding energies, bonding properties, and spin–spin coupling constants of complexes stabilized by pnicogen bonds. In: Scheiner S (ed) Noncovalent forces. Challenges and advances in computational chemistry and physics, vol 19. Springer, Berlin. doi: 10.1007/978-3-319-14163-3_8 Google Scholar
  19. 19.
    Scheiner S (2013) Acc Chem Res 46(2):280CrossRefGoogle Scholar
  20. 20.
    Esrafili MD, Mohammadian-Sabet F (2015) Chem Phys Lett 628:71CrossRefGoogle Scholar
  21. 21.
    Esrafili MD, Mohammadian-Sabet F (2015) J Mol Model 21(3):1Google Scholar
  22. 22.
    Esrafili MD, Mohammadian-Sabet F (2016) Chem Phys Lett 645:32CrossRefGoogle Scholar
  23. 23.
    Metrangolo P, Resnati G (2015) Halogen bonding I. Impact on materials chemistry and life sciences. Topics in current chemistry, vol 358. Springer, BerlinGoogle Scholar
  24. 24.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13(2):305CrossRefGoogle Scholar
  25. 25.
    Alkorta I, Rozas I, Elguero J (2001) J Phys Chem A 105(4):743CrossRefGoogle Scholar
  26. 26.
    Ruoff RS, Emilsson T, Jaman AI, Germann TC, Gutowsky HS (1992) J Chem Phys 96(5):3441CrossRefGoogle Scholar
  27. 27.
    Urban RD, Rouillé G, Takami M (1997) J Mol Struct 413:511CrossRefGoogle Scholar
  28. 28.
    Alkorta I, Elguero J, Fruchier A, Macquarrie DJ, Virgili A (2001) J Organomet Chem 625(2):148CrossRefGoogle Scholar
  29. 29.
    Rossi AR, Jasinski JM (1990) Chem Phys Lett 169(5):399CrossRefGoogle Scholar
  30. 30.
    Yamamura M, Kano N, Kawashima T, Matsumoto T, Harada J, Ogawa K (2008) J Org Chem 73(21):8244CrossRefGoogle Scholar
  31. 31.
    Hagemann M, Berger RJF, Hayes SA, Stammler H-G, Mitzel NW (2008) Chem A Eur J 14(35):11027CrossRefGoogle Scholar
  32. 32.
    Vojinović K, McLachlan LJ, Hinchley SL, Rankin DWH, Mitzel NW (2004) Chem A Eur J 10(12):3033CrossRefGoogle Scholar
  33. 33.
    Marín-Luna M, Alkorta I, Elguero J (2015) J Organomet Chem 794:206CrossRefGoogle Scholar
  34. 34.
    Korlyukov AA, Lyssenko KA, Antipin MY, Kirin VN, Chernyshev EA, Knyazev SP (2002) Inorg Chem 41(20):5043CrossRefGoogle Scholar
  35. 35.
    Marin-Luna M, Alkorta I, Elguero J (2016) J Phys Chem A 120(4):648CrossRefGoogle Scholar
  36. 36.
    Esrafili MD, Mohammadirad N, Solimannejad M (2015) Chem Phys Lett 628:16CrossRefGoogle Scholar
  37. 37.
    Del Bene JE, Alkorta I, Elguero J (2015) J Phys Chem A 119(22):5853CrossRefGoogle Scholar
  38. 38.
    Bene JED, Alkorta I, Elguero J (2015) J Phys Chem A 119(12):3125CrossRefGoogle Scholar
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian IWC. Gaussian-09, Revision A.01Google Scholar
  40. 40.
    Møller C, Plesset MS (1934) Phys Rev 46(7):618CrossRefGoogle Scholar
  41. 41.
    Papajak E, Zheng J, Xu X, Leverentz HR, Truhlar DG (2011) J Chem Theory Comput 7(10):3027CrossRefGoogle Scholar
  42. 42.
    Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96(9):6796CrossRefGoogle Scholar
  43. 43.
    Lu T, Chen F (2012) J Comput Chem 33(5):580CrossRefGoogle Scholar
  44. 44.
    Jmol (2013) An open-source java viewer for chemical structures in 3D vhwjoaSGoogle Scholar
  45. 45.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  46. 46.
    Popelier PL (2000) Atoms in molecules: an introduction. Prentice Hall, LondonCrossRefGoogle Scholar
  47. 47.
    Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. WILEY-VCH, WeinhamGoogle Scholar
  48. 48.
    AIMAll (Version 14.11.23) TAK, TK Gristmill Software, Overland Park KS, USA, 2014 ( Scholar
  49. 49.
    Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: natural bond orbital analysis program. J Comput Chem 34(16):1429–1437Google Scholar
  50. 50.
    Murray JS, Concha MC, Politzer P (2011) J Mol Model 17(9):2151CrossRefGoogle Scholar
  51. 51.
    Politzer P, Murray JS, Clark T (2015) J Mol Model 21(3):52CrossRefGoogle Scholar
  52. 52.
    Knop O, Boyd RJ, Choi SC (1988) J Am Chem Soc 110(22):7299CrossRefGoogle Scholar
  53. 53.
    Gibbs GV, Hill FC, Boisen MB, Downs RT (1998) Phys Chem Miner 25(8):585CrossRefGoogle Scholar
  54. 54.
    Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117(12):5529CrossRefGoogle Scholar
  55. 55.
    Alkorta I, Barrios L, Rozas I, Elguero J (2000) THEOCHEM 496(1–3):131CrossRefGoogle Scholar
  56. 56.
    Knop O, Rankin KN, Boyd RJ (2001) J Phys Chem A 105(26):6552CrossRefGoogle Scholar
  57. 57.
    Mata I, Molins E, Alkorta I, Espinosa E (2007) J Phys Chem A 111(28):6425CrossRefGoogle Scholar
  58. 58.
    Mata I, Alkorta I, Molins E, Espinosa E (2010) Chem A Eur J 16(8):2442CrossRefGoogle Scholar
  59. 59.
    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122(45):11154CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Departamento de Química OrgánicaUniversidad de VigoVigoSpain
  2. 2.Instituto de Química MédicaCSICMadridSpain

Personalised recommendations