Asymmetric hydrogen bonding in formic acid–nitric acid dimer observed by quantum molecular dynamics simulations

Regular Article

Abstract

Heterodimer of formic acid and nitric acid, of which the monomer acidity has large difference, was studied by on-the-fly ab initio molecular dynamics (AIMD) and path integral molecular dynamics (PIMD) simulations with RI-BVWN/SVP level of density functional theory, to elucidate the nuclear quantum effect and isotopic effect on the structural dynamics of the heterodimer. At 300 K, the two hydrogen bonds were maintained in both AIMD and PIMD regimes. Analyses in structural parameters suggested that this heterodimer should exist in the asymmetric binding mode, where hydrogen bonding is stronger on the C=OH–O–N side. The asymmetry in the binding can be observed even more when the nuclear quantum effect was introduced. Although the complex has an equal conformation connected by a double hydrogen bonding, analyses in the principal component modes revealed the dominance of the dimer opening and twisting motions, which were suggested to obstruct double-proton transfer.

Keywords

Formic acid–nitric acid dimer Path integral molecular dynamics simulation Nuclear quantum effect Isotopic effect Hydrogen bond 

Notes

Acknowledgement

This authors wish to acknowledge Grant-in-aid for Scientific Research (KAKENHI) by Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (15KT0067 and 16H00780); and Thailand Research Fund (MRG5980189 and RSA5880057) for the financial support. The Department of Chemistry, Faculty of Science, Chiang Mai University, is also acknowledged for the courtesy in management. Theoretical calculations were partly performed at the Research Centre for Computational Science, Institute for Molecular Science, Japan, and Centre of Computational Materials Science, Institute for Solid State Physics, The University of Tokyo, Japan.

References

  1. 1.
    Millikan RC, Pitzer KS (1958) The infrared spectra of dimeric and crystalline formic acid. J Am Chem Soc 80(14):3515–3521CrossRefGoogle Scholar
  2. 2.
    Hayashi S, Umemura J (1974) Disappearances of COOH infrared bands of benzoic acid. J Chem Phys 60(7):2630–2633CrossRefGoogle Scholar
  3. 3.
    Hayashi S, Umemura J (1975) Infrared spectroscopic evidence for the coexistence of two molecular configurations in crystalline fatty acids. J Chem Phys 63(5):1732–1740CrossRefGoogle Scholar
  4. 4.
    Bertie JE, Michaelian KH (1982) The Raman spectra of gaseous formic acid -h2 and -d2. J Chem Phys 76(2):886–894CrossRefGoogle Scholar
  5. 5.
    Bertie JE et al (1986) The Raman-active O–H and O–D stretching vibrations and Raman spectra of gaseous formic acid-d1 and -OD. J Chem Phys 85(9):4779–4789CrossRefGoogle Scholar
  6. 6.
    Chocholousova J, Spirko V, Hobza P (2004) First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–H—O and improper blue-shifted C–H—O hydrogen bonds. Phys Chem Chem Phys 6(1):37–41CrossRefGoogle Scholar
  7. 7.
    Madeja F et al (2004) Polar isomer of formic acid dimers formed in helium nanodroplets. J Chem Phys 120(22):10554–10560CrossRefGoogle Scholar
  8. 8.
    Kanakidou M et al (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5(4):1053–1123CrossRefGoogle Scholar
  9. 9.
    Hazra MK, Francisco JS, Sinha A (2013) Gas phase hydrolysis of formaldehyde to form methanediol: impact of formic acid catalysis. J Phys Chem A 117(46):11704–11710CrossRefGoogle Scholar
  10. 10.
    Kumar M, Sinha A, Francisco JS (2016) Role of double hydrogen atom transfer reactions in atmospheric chemistry. Acc Chem Res 49(5):877–883CrossRefGoogle Scholar
  11. 11.
    Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, OxfordGoogle Scholar
  12. 12.
    Chang YT et al (1987) An analysis of the infrared and Raman spectra of the formic acid dimer (HCOOH)2. J Am Chem Soc 109(24):7245–7253CrossRefGoogle Scholar
  13. 13.
    Shida N, Barbara PF, Almlöf J (1991) A reaction surface Hamiltonian treatment of the double proton transfer of formic acid dimer. J Chem Phys 94(5):3633–3643CrossRefGoogle Scholar
  14. 14.
    Birer Ö, Havenith M (2009) High-resolution infrared spectroscopy of the formic acid dimer. Annu Rev Phys Chem 60(1):263–275CrossRefGoogle Scholar
  15. 15.
    Luckhaus D (2010) Hydrogen exchange in formic acid dimer: tunnelling above the barrier. Phys Chem Chem Phys 12(29):8357–8361CrossRefGoogle Scholar
  16. 16.
    Ivanov SD, Grant IM, Marx D (2015) Quantum free energy landscapes from ab initio path integral metadynamics: double proton transfer in the formic acid dimer is concerted but not correlated. J Chem Phys 143(12):124304CrossRefGoogle Scholar
  17. 17.
    Florio GM et al (2003) Theoretical modeling of the OH stretch infrared spectrum of carboxylic acid dimers based on first-principles anharmonic couplings. J Chem Phys 118(4):1735–1746CrossRefGoogle Scholar
  18. 18.
    Karsten H et al (2003) Coherent vibrational dynamics of intermolecular hydrogen bonds in acetic acid dimers studied by ultrafast mid-infrared spectroscopy. J Phys Condens Matter 15(1):S129CrossRefGoogle Scholar
  19. 19.
    Heyne K et al (2004) Coherent low-frequency motions of hydrogen bonded acetic acid dimers in the liquid phase. J Chem Phys 121(2):902–913CrossRefGoogle Scholar
  20. 20.
    Dreyer J (2005) Density functional theory simulations of two-dimensional infrared spectra for hydrogen-bonded acetic acid dimers. Int J Quantum Chem 104(5):782–793CrossRefGoogle Scholar
  21. 21.
    Durlak P et al (2007) Car-Parrinello and path integral molecular dynamics study of the hydrogen bond in the chloroacetic acid dimer system. J Chem Phys 127(6):064304CrossRefGoogle Scholar
  22. 22.
    Feng G et al (2012) Proton transfer in homodimers of carboxylic acids: the rotational spectrum of the dimer of acrylic acid. J Am Chem Soc 134(46):19281–19286CrossRefGoogle Scholar
  23. 23.
    Golubev NS, Denisov GS (1982) Spectra and structure of asymmetric carboxylic acid dimers in solution. J Appl Spectrosc 37(2):930–936CrossRefGoogle Scholar
  24. 24.
    Smedarchina Z, Fernández-Ramos A, Siebrand W (2005) Tunneling dynamics of double proton transfer in formic acid and benzoic acid dimers. J Chem Phys 122(13):134309CrossRefGoogle Scholar
  25. 25.
    Gou Q et al (2013) Conformational equilibria in bimolecules of carboxylic acids: a rotational study of fluoroacetic acid–acrylic acid. J Phys Chem Lett 4(17):2838–2842CrossRefGoogle Scholar
  26. 26.
    Kukolich SG et al (2013) Microwave structure for the propiolic acid–formic acid complex. J Phys Chem A 117(39):9525–9530CrossRefGoogle Scholar
  27. 27.
    Frurip DJ, Curtiss LA, Blander M (1980) Vapor phase association in acetic and trifluoroacetic acids. Thermal conductivity measurements and molecular orbital calculations. J Am Chem Soc 102(8):2610–2616CrossRefGoogle Scholar
  28. 28.
    Keller JW (2004) The formic acid−trifluoroacetic acid bimolecule. gas-phase infrared spectrum and computational studies. J Phys Chem A 108(21):4610–4618CrossRefGoogle Scholar
  29. 29.
    Daly AM et al (2011) Microwave measurements of proton tunneling and structural parameters for the propiolic acid–formic acid dimer. J Chem Phys 135(15):154304CrossRefGoogle Scholar
  30. 30.
    Agranat I, Riggs NV, Radom L (1991) The formamidine–formic acid dimer: a theoretical examination of its equilibrium structure and of the double-proton-transfer process. J Chem Soc Chem Commun 2:80–81CrossRefGoogle Scholar
  31. 31.
    Mackenzie RB, Dewberry CT, Leopold KR (2014) The formic acid–nitric acid complex: microwave spectrum, structure, and proton transfer. J Phys Chem A 118(36):7975–7985CrossRefGoogle Scholar
  32. 32.
    Schneider J et al (1998) Nitric acid (HNO3) in the upper troposphere and lower stratosphere at midlatitudes: new results from aircraft-based mass spectrometric measurements. J Geophys Res Atmos 103(D19):25337–25343CrossRefGoogle Scholar
  33. 33.
    González Abad G et al (2009) Global distribution of upper tropospheric formic acid from the ACE-FTS. Atmos Chem Phys 9(20):8039–8047CrossRefGoogle Scholar
  34. 34.
    Miura S, Tuckerman ME, Klein ML (1998) An ab initio path integral molecular dynamics study of double proton transfer in the formic acid dimer. J Chem Phys 109(13):5290–5299CrossRefGoogle Scholar
  35. 35.
    Durlak P, Berski S, Latajka Z (2011) Car-Parrinello and path integral molecular dynamics study of the hydrogen bond in the acetic acid dimer in the gas phase. J Mol Model 17(11):2995–3004CrossRefGoogle Scholar
  36. 36.
    Kungwan N et al (2014) Nuclear quantum effect and temperature dependency on the hydrogen-bonded structure of 7-azaindole dimer. Theor Chem Acc 133(9):1–10CrossRefGoogle Scholar
  37. 37.
    Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  38. 38.
    Gillan MJ (1990) The path-integral simulation of quantum system. In: Catlow CRA, Parker SC, Allen MP (eds) Computer modelling of fluids, polymers and solids. Springer Netherlands, DordrechtGoogle Scholar
  39. 39.
    Tuckerman ME et al (1996) Efficient and general algorithms for path integral Car-Parrinello molecular dynamics. J Chem Phys 104(14):5579–5588CrossRefGoogle Scholar
  40. 40.
    Shiga M, Tachikawa M, Miura S (2000) Ab initio molecular orbital calculation considering the quantum mechanical effect of nuclei by path integral molecular dynamics. Chem Phys Lett 332(3–4):396–402CrossRefGoogle Scholar
  41. 41.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871CrossRefGoogle Scholar
  42. 42.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138CrossRefGoogle Scholar
  43. 43.
    Jones RO (2015) Density functional theory: its origins, rise to prominence, and future. Rev Mod Phys 87(3):897–923CrossRefGoogle Scholar
  44. 44.
    Dirac PAM (1929) Quantum mechanics of many-electron systems. Proc R Soc Lond A Math Phys Eng Sci 123(792):714–733CrossRefGoogle Scholar
  45. 45.
    Slater JC (1951) A simplification of the Hartree–Fock method. Phys Rev 81(3):385–390CrossRefGoogle Scholar
  46. 46.
    Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58(8):1200–1211CrossRefGoogle Scholar
  47. 47.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33(12):8822–8824CrossRefGoogle Scholar
  48. 48.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100CrossRefGoogle Scholar
  49. 49.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  50. 50.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):13244–13249CrossRefGoogle Scholar
  51. 51.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
  52. 52.
    Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98(2):1372–1377CrossRefGoogle Scholar
  53. 53.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  54. 54.
    Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105(22):9982–9985CrossRefGoogle Scholar
  55. 55.
    Sierka M, Hogekamp A, Ahlrichs R (2003) Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation. J Chem Phys 118(20):9136–9148CrossRefGoogle Scholar
  56. 56.
    TURBOMOLE 5.7. (2002) University of Karlsruhe and Forschungszentrum Karlsruhe GmbHGoogle Scholar
  57. 57.
    Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519CrossRefGoogle Scholar
  58. 58.
    Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697CrossRefGoogle Scholar
  59. 59.
    Martyna GJ, Klein ML, Tuckerman M (1992) Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97(4):2635–2643CrossRefGoogle Scholar
  60. 60.
    Kim YL, Lim S, Kim Y (1999) The role of a short and strong hydrogen bond on the double proton transfer in the formamidine–formic acid complex: theoretical studies in the gas phase and in solution. J Phys Chem A 103:6Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Graduate School of NanobioscienceYokohama City UniversityYokohamaJapan

Personalised recommendations