The Beckmann rearrangement in the framework of reaction electronic flux

Regular Article
  • 272 Downloads

Abstract

We have computationally investigated the mechanism of Beckmann rearrangement in the framework of reaction electronic flux. The reaction has been studied in three different reaction conditions. The electronic transfer contribution of the reaction electronic flux was found to play a crucial role in this reaction. Natural bond order analysis and dual descriptor provide additional support for elucidating the mechanism of this reaction.

Keywords

Reaction electronic flux Dual descriptor Conceptual DFT 

Notes

Acknowledgements

S. Giri and M. Jana thank DST, SERB for funding. RIR wishes to acknowledge ICM No. 120082 and VRIIP Universidad Arturo Prat. Recourses and computational facilities of National Institute of Technology Rourkela are also greatly acknowledged.

Supplementary material

214_2016_2025_MOESM1_ESM.docx (418 kb)
Supplementary material 1 (DOCX 417 kb)

References

  1. 1.
    Beckmann E (1886) Chem Ber 89:988–993CrossRefGoogle Scholar
  2. 2.
    Blatt AH (1933) Chem Rev 12:215–260CrossRefGoogle Scholar
  3. 3.
    Jones B (1944) Chem Rev 35:335–350CrossRefGoogle Scholar
  4. 4.
    Moller F (1957) In: Muller E (ed) Methoden der Organischen Chemie, Part 1, vol 11. Thieme, Stuttgart, p 892Google Scholar
  5. 5.
    Donaruma LG, Heldt WZ (1960) Org React 11:1–156Google Scholar
  6. 6.
    Beckwith ALJ (1970) In: Zabicky J (ed) The chemistry of amides. Interscience, New York, p 131Google Scholar
  7. 7.
    McCarty CG (1970) In: Patai S (ed) The chemistry of the carbon nitrogen double bond. Interscience, New York, p 408Google Scholar
  8. 8.
    Smith PAS (1963) In: De Mayo P (ed) Molecular rearrangements. Interscience, New York, p 45Google Scholar
  9. 9.
    Mukamal H (1971) Nuova Chim 47:79–84Google Scholar
  10. 10.
    Hornke G, Krauch H, Kunz W (1965) Chem Zgt 1965(89):525Google Scholar
  11. 11.
    Gawley RE (2004) Org React 35:1–420Google Scholar
  12. 12.
    Jochims JC, Hehl S (1990) Synthesis 12:1128–1133CrossRefGoogle Scholar
  13. 13.
    Hesse M (1991) Ring enlargement in organic chemistry. VCH, WeinheimGoogle Scholar
  14. 14.
    Holth TA, Hutt OE, Georg GI (2016) Mol Rearrange Org Synth 111–150Google Scholar
  15. 15.
    Chandrasekhar S (2014) 7.25 The Beckmann and related reactions. In: Comprehensive organic synthesis II, 2nd edn. pp 770–800Google Scholar
  16. 16.
    Heldt WZ (1961) J Org Chem 26:1695–1702CrossRefGoogle Scholar
  17. 17.
    Vinnik MI, Zarakhani NG (1967) Russ Chem Rev 36:51–64CrossRefGoogle Scholar
  18. 18.
    Yamabe S, Tsuchida N, Yamazaki S (2005) J Org Chem 70:10638–10644CrossRefGoogle Scholar
  19. 19.
    Lin CR, Yu LJ, Li S, Karton A (2016) Chem Phys Lett 659:100–104CrossRefGoogle Scholar
  20. 20.
    Srivastava VP, Yadav AK, Yadav LDS (2014) Synlett 25:665–670CrossRefGoogle Scholar
  21. 21.
    De Luca L, Giacomelli G, Porcheddu A (2002) J Org Chem 67:6272–6274CrossRefGoogle Scholar
  22. 22.
    Hashimoto M, Obora Y, Sakaguchi S, Ishii Y (2008) J Org Chem 73:2894–2897CrossRefGoogle Scholar
  23. 23.
    Nguyen MT (1993) Chem Soc Perkin Trans 2:1969–1972CrossRefGoogle Scholar
  24. 24.
    Nguyen MT, Raspoet G, Vanquickenborne LG (1997) J Chem Soc Perkin Trans 2:821–825CrossRefGoogle Scholar
  25. 25.
    Nguyen MT, Raspoet G, Vanquickenborne LG (1997) J Am Chem Soc 119:2552–2562CrossRefGoogle Scholar
  26. 26.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  27. 27.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874CrossRefGoogle Scholar
  28. 28.
    Morell C, Tognetti V, Bignon E, Dumont E, Hernandez-Haro N, Herrera B, Grand A, Gutiérrez-Oliva S, Joubert L, Toro-Labbé A (2015) Theor Chem Acc 134:1–7CrossRefGoogle Scholar
  29. 29.
    Vogt-Geisse S, Toro-Labbé A (2009) J Chem Phys 130:244308-1–244308-7CrossRefGoogle Scholar
  30. 30.
    Inostroza-Rivera R, Herrera B, Toro-Labbé A (2014) Phys Chem Chem Phys 16:14489–14495CrossRefGoogle Scholar
  31. 31.
    Morell C, Herrera B, Gutiérrez-Oliva S, Cerón ML, Grand A, Toro-Labbé A (2012) J Phys Chem A 116(26):7074–7081CrossRefGoogle Scholar
  32. 32.
    Foster J, Weinhold F (1980) J Am Chem Soc 102:7211–7218CrossRefGoogle Scholar
  33. 33.
    Reed A, Curtiss L, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  34. 34.
    Koopmans T (1934) Physica 1:104–113CrossRefGoogle Scholar
  35. 35.
    Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205–212CrossRefGoogle Scholar
  36. 36.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  37. 37.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  38. 38.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206CrossRefGoogle Scholar
  39. 39.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094CrossRefGoogle Scholar
  40. 40.
    Fukui K (1970) J Phys Chem A 74:4161–4163CrossRefGoogle Scholar
  41. 41.
    Fukui K (1981) Acc Chem Res 14:363–368CrossRefGoogle Scholar
  42. 42.
    Reed AE, Weinhold F (1983) J Chem Phys 78:4066–7073CrossRefGoogle Scholar
  43. 43.
    Reed AE, Weinhold F (1985) J Chem Phys 83:735–746CrossRefGoogle Scholar
  44. 44.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2011) Gaussian 09. Revision C.01, Inc., WallingfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Theoretical Chemistry Laboratory, Department of ChemistryNational Institute of Technology RourkelaRourkelaIndia
  2. 2.Millennium Nucleus Chemical Processes and Catalysis (CPC), Facultad de Ciencias de la SaludUniversidad Arturo PratIquiqueChile
  3. 3.Molecular Simulation Laboratory, Department of ChemistryNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations