Advertisement

Can low-barrier hydrogen bond exist in systems with second row elements? An ab initio path integral molecular dynamics study for deprotonated hydrogen sulfide dimer

  • Yudai Ogata
  • Tsutomu Kawatsu
  • Masanori Tachikawa
Regular Article
  • 114 Downloads

Abstract

Nuclear quantum effect and thermal effect on deprotonated hydrogen sulfide dimer anion \({\text{H}}_{3} {\text{S}}_{2}^{-}\), composed of a second row element, are widely explored by ab initio on-the-fly path integral molecular dynamics simulation. At low temperature, the hydrogen-bonded proton tends to be diffusively located at the central position between two sulfur atoms, which is the typical characteristic feature of so-called low-barrier hydrogen bond (LBHB). This is the first case of the LBHB systems composed of the second row elements, although the hydrogen-bonded distance in \({\text{H}}_{3} {\text{S}}_{2}^{-}\) (over 3.4 Å) is much longer than the previously reported LBHB composed of first row elements (<2.5 Å). At high temperature, the distance between two sulfur atoms is longer than that at low temperature, and the hydrogen-bonded proton localizes to each sulfur atom. Similar tendency is obtained in the deuterated \({\text{D}}_{3} {\text{S}}_{2}^{-}\) species at all temperature. Analyzing the relationship between the position of the hydrogen-bonded proton and the quantum fluctuation effect of the proton, we elucidate that the LBHB is induced by the quantum tunneling at low temperature, while such trend becomes weak and the character of LBHB vanishes at room temperature for \({\text{H}}_{3} {\text{S}}_{2}^{-}\).

Keywords

Low-barrier hydrogen bond Path integral molecular dynamics simulation Deprotonated hydrogen sulfide dimer anion Deuterated effect Nuclear quantum effect 

Notes

Acknowledgments

This work is partly supported by Grants-in-Aid for Scientific Research (KAKENHI) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Grant Numbers 26620013, 26102539, and 15KT0067 for MT, and the Strategic Programs for Innovative Research (SPIRE), MEXT, and the Computational Materials Science Initiative (CMSI), Japan. Theoretical calculations were partly performed at the Research Center for Computational Science, Institute for Molecular Science, Japan and Center of Computational Materials Science, Institute for Solid State Physics, The University of Tokyo, Japan.

Supplementary material

214_2016_1958_MOESM1_ESM.pdf (301 kb)
Supplementary material 1 (PDF 300 kb)

References

  1. 1.
    Jeffrey GA (1997) An introduction to hydrogen bonding. Topics in physical chemistry. A series of advanced textbooks and monographs. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Steiner T (2002) Angew Chem Int Ed 41:48CrossRefGoogle Scholar
  3. 3.
    Perrin CL, Nielson JB (1997) Annu Rev Phys Chem 48:511CrossRefGoogle Scholar
  4. 4.
    Kohen A, Limbach H-H (2006) Isotope effects in chemistry and biology. CRC Press, Taylor and Francis group, Boca RatonGoogle Scholar
  5. 5.
    Emsley J (1980) Chem Soc Rev 9:91CrossRefGoogle Scholar
  6. 6.
    Gilli G, Gilli P (2000) J Mol Struct 552:1CrossRefGoogle Scholar
  7. 7.
    Gerlt JA, Kreevoy MM, Cleland WW, Frey PA (1997) Chem Biol 4:259CrossRefGoogle Scholar
  8. 8.
    Robertson WH, Johnson MA (2003) Annu Rev Phys Chem 54:173CrossRefGoogle Scholar
  9. 9.
    Robertson WH, Diken EG, Price EA, Shin JW, Johnson MA (2003) Science 299:1367CrossRefGoogle Scholar
  10. 10.
    Day VW, Hossain A, Kang SO, Powell D, Lushington G, Bowman-James K (2007) J Am Chem Soc 129:8692CrossRefGoogle Scholar
  11. 11.
    Yamaguchi S, Kamikubo H, Kurihara K, Kuroki R, Niimura N, Shimizu N, Yamazaki Y, Kataoka M (2009) PNAS 106:440CrossRefGoogle Scholar
  12. 12.
    Schiøtt B, Iversen BB, Madsen GKH, Larsen FK, Bruice TC (1998) PNAS 95:12799CrossRefGoogle Scholar
  13. 13.
    Cleland WW, Kreevoy MM (1994) Science 264:1887CrossRefGoogle Scholar
  14. 14.
    Ogata Y, Daido M, Kawashima Y, Tachikawa M (2013) Rsc Adv 3:25252CrossRefGoogle Scholar
  15. 15.
    Kanematsu Y, Tachikawa M (2014) J Chem Phys 141:185101CrossRefGoogle Scholar
  16. 16.
    Tachikawa M, Shiga M (2005) J Am Chem Soc 127:11908CrossRefGoogle Scholar
  17. 17.
    Ogata Y, Kawashima Y, Takahashi K, Tachikawa M (2014) Theor Chem Acc 134:25252Google Scholar
  18. 18.
    Ishibashi H, Hayashi A, Shiga M, Tachikawa M (2008) ChemPhysChem 9:383CrossRefGoogle Scholar
  19. 19.
    Samson CCM, Klopper W (2002) J Mol Struct Theochem 586:201CrossRefGoogle Scholar
  20. 20.
    McCoy AB, Huang XC, Carter S, Bowman JM (2005) J Chem Phys 123:064317CrossRefGoogle Scholar
  21. 21.
    Yang Y, Kühn O (2008) Z Phys Chem 222:1375CrossRefGoogle Scholar
  22. 22.
    Asmis KR, Yang YG, Santambrogio G, Brümmer M, Roscioli JR, McCunn LR, Johnson MA, Kühn O (2007) Angew Chem Int Ed 46:8691CrossRefGoogle Scholar
  23. 23.
    Yang Y, Kühn O, Santambrogio G, Goebbert DJ, Asmis KR (2008) J Chem Phys 129:224302CrossRefGoogle Scholar
  24. 24.
    Yang YG, Kühn O (2011) Chem Phys Lett 505:1CrossRefGoogle Scholar
  25. 25.
    Kawashima Y, Tachikawa M (2014) J Chem Theory Comput 10:153CrossRefGoogle Scholar
  26. 26.
    McDaniel DH, Valleé RE (1963) Inorg Chem 2:996CrossRefGoogle Scholar
  27. 27.
    Schroeder LW, Ibers JA (1968) Inorg Chem 7:594CrossRefGoogle Scholar
  28. 28.
    McGaw BL, Ibers JA (1963) J Chem Phys 39:2677CrossRefGoogle Scholar
  29. 29.
    Blinc R (1958) Nature 182:1016CrossRefGoogle Scholar
  30. 30.
    McDaniel DH, Evans WG (1966) Inorg Chem 5:2180CrossRefGoogle Scholar
  31. 31.
    Sabin JR (1971) J Chem Phys 54:4675CrossRefGoogle Scholar
  32. 32.
    Sabin JR (1971) J Chem Phys 55:5423CrossRefGoogle Scholar
  33. 33.
    Scheiner S (1994) Theochem J Mol Struct 113:65CrossRefGoogle Scholar
  34. 34.
    Szczęśniak MM, Scheiner S (1982) J Chem Phys 77:4586CrossRefGoogle Scholar
  35. 35.
    Huang XC, Braams BJ, Carter S, Bowman JM (2004) J Am Chem Soc 126:5042CrossRefGoogle Scholar
  36. 36.
    Tuckerman ME, Marx D, Klein ML, Parrinello M (1997) Science 275:817CrossRefGoogle Scholar
  37. 37.
    Ceriotti M, Cuny J, Parrinello M, Manolopoulos DE (2013) PNAS 110:15591CrossRefGoogle Scholar
  38. 38.
    Abu-Dari K, Raymond KN, Freyberg DP (1979) J Am Chem Soc 101:3688CrossRefGoogle Scholar
  39. 39.
    Feynman RP, Hibbs AR (1965) Quantum mechanics and path integrals. McGraw-Hill Inc, New YorkGoogle Scholar
  40. 40.
    Gillan MJ (1990) In: Catlow CRA, Parker SC, Allen MP (eds) The path-integral simulation of quantum systems in computer modeling of fluids polymers and solids. Kluwer Academic Publishers, Bath, p 155CrossRefGoogle Scholar
  41. 41.
    Altland A, Simons B (2006) Condensed matter field theory. Cambridge University Press, New YorkCrossRefGoogle Scholar
  42. 42.
    Coleman S (1985) Aspects of symmetry. Cambridge University Press, New YorkCrossRefGoogle Scholar
  43. 43.
    Nakamura H, Mil’nikov G (2014) Quantum mechanical tunneling in chemical physics. CRC Press, Boca RatonGoogle Scholar
  44. 44.
    Herman MF, Bruskin EJ, Berne BJ (1982) J Chem Phys 76:5150CrossRefGoogle Scholar
  45. 45.
    Schmidt JR, Tully JC (2007) J Chem Phys 127:094103CrossRefGoogle Scholar
  46. 46.
    Suzuki K, Tachikawa M, Shiga M (2010) J Chem Phys 132:144108CrossRefGoogle Scholar
  47. 47.
    Tuckerman ME, Berne BJ, Martyna GJ, Klein ML (1993) J Chem Phys 99:2796CrossRefGoogle Scholar
  48. 48.
    Martyna GJ, Hughes A, Tuckerman ME (1999) J Chem Phys 110:3275CrossRefGoogle Scholar
  49. 49.
    Marx D, Parrinello M (1996) J Chem Phys 104:4077CrossRefGoogle Scholar
  50. 50.
    Cao J, Berne BJ (1993) J Chem Phys 99:2902CrossRefGoogle Scholar
  51. 51.
    Cao J, Martyna GJ (1996) J Chem Phys 104:2028CrossRefGoogle Scholar
  52. 52.
    Shiga M, Tachikawa M, Miura S (2001) J Chem Phys 115:9149CrossRefGoogle Scholar
  53. 53.
    Makri N, Sim EJ, Makarov DE, Topaler M (1996) PNAS 93:3926CrossRefGoogle Scholar
  54. 54.
    Benoit M, Marx D, Parrinello M (1998) Nature 392:258CrossRefGoogle Scholar
  55. 55.
    Suzuki K, Shiga M, Tachikawa M (2008) J Chem Phys 129:144310CrossRefGoogle Scholar
  56. 56.
    Martyna GJ, Klein ML, Tuckerman M (1992) J Chem Phys 97:2635CrossRefGoogle Scholar
  57. 57.
    Kawashima Y, Suzuki K, Tachikawa M (2013) J Phys Chem A 117:5205CrossRefGoogle Scholar
  58. 58.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  59. 59.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  60. 60.
    Lee CH, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  61. 61.
    Vahtras O, Almlöf J, Feyereisen MW (1993) Chem Phys Lett 213:514CrossRefGoogle Scholar
  62. 62.
    Feyereisen M, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359CrossRefGoogle Scholar
  63. 63.
    Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143CrossRefGoogle Scholar
  64. 64.
    Ahlrichs R, Bär H, Häser H, Horn H, Kölmel C (1989) Chem Phys Lett 208:359Google Scholar
  65. 65.
    Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116:3175CrossRefGoogle Scholar
  66. 66.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision C. 1. Gaussian Inc, WallingfordGoogle Scholar
  67. 67.
    McQuarrie DA, Simon JD (1997) Physical chemistry: a molecular approach. University Science Books, SausalitoGoogle Scholar
  68. 68.
    Wilson EB Jr, Decius JC, Cross PC (1980) Molecular vibrations: the theory of infrared and Raman vibrational spectra. Dover Publications Inc, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yudai Ogata
    • 1
  • Tsutomu Kawatsu
    • 1
    • 2
  • Masanori Tachikawa
    • 1
  1. 1.Graduate School of NanobioscienceYokohama City UniversityYokohamaJapan
  2. 2.Graduate School of Arts and SciencesThe University of TokyoTokyoJapan

Personalised recommendations