The contact of graphene with Ni(111) surface: description by modern dispersive forces approaches

  • Helena Muñoz-Galán
  • Francesc Viñes
  • Julian Gebhardt
  • Andreas Görling
  • Francesc Illas
Regular Article
Part of the following topical collections:
  1. Festschrift in honour of A. Vela


Here we present a density-functional theory (DFT) study on the suitability of modern corrections for the inclusion of dispersion-related terms (DFT-D) in treating the interaction of graphene and metal surfaces, exemplified by the graphene/Ni(111) system. The Perdew–Burke–Ernzerhof exchange–correlation functional is used as basis, on top of which we tested the family of Grimme corrections (D2 and D3, including Becke–Johnson damping and the Andersson approach) as well as different flavors of the approach by Tkatchenko and Scheffler (TS). Two experimentally observed chemisorbed states, top-fcc and bridge-top conformations, were examined, as well as one physisorbed situation, the hcp-fcc state. Geometric, energetic, and electronic properties were compared to sets of experimental data for our model system of graphene/Ni(111), but also for available data of bulk Ni, graphite, and free-standing graphene. Results show that two of the most recent approximations, the fully ab initio TS–MBD, and the semi-empirical Grimme D3 correction are best suited to describe graphene–metal contacts, yet, comparing to earlier studies, the Rev-vdW-DF2 functional is also a good option, whereas optB86-vdW and optB88b-vdW functionals are fairly close to experimental values to be harmlessly used. The present results highlight how different approaches for the approximate treatment of dispersive forces yield different results, and so fine-tuning and testing of the envisioned approach for every specific system are advisable. The present survey clears the path for future accurate and affordable theoretical studies of nanotechnological devices based on graphene–metal contacts.


Graphene Dispersive forces Ni(111) Density functional theory 

Supplementary material

214_2016_1925_MOESM1_ESM.docx (65 kb)
Supplementary material 1 (DOCX 65 kb)


  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666CrossRefGoogle Scholar
  2. 2.
    N’Diaye AT, Bleikamp S, Feibelman PJ, Michely T (2006) Phys Rev Lett 97:215501CrossRefGoogle Scholar
  3. 3.
    Marchini S, Günther S, Wintterlin J (2007) Phys Rev B 76:075429CrossRefGoogle Scholar
  4. 4.
    Vázquez de Parga AL, Calleja F, Borca B, Passeggi MCG, Hinarejos JJ, Guinea F, Miranda R (2008) Phys Rev Lett 100:056807CrossRefGoogle Scholar
  5. 5.
    Koch RJ, Weser M, Zhao W, Viñes F, Gotterbarm K, Kozlov SM, Höfert O, Ostler M, Papp C, Gebhardt J, Steinrück HP, Görling A, Seyller T (2012) Phys Rev B 86:075401CrossRefGoogle Scholar
  6. 6.
    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Nature 457:706CrossRefGoogle Scholar
  7. 7.
    Varyjhalov A, Sánchez-Barriga J, Shikin AM, Biswas C, Vescovo E, Rybkin A, Marchenko D, Reader O (2008) Phys Rev Lett 101:157601CrossRefGoogle Scholar
  8. 8.
    Janthon P, Viñes F, Kozlov SM, Limtrakul J, Illas F (2013) J Chem Phys 138:244701CrossRefGoogle Scholar
  9. 9.
    Zhao W, Kozlov SM, Höffert O, Gotterbarm K, Lorenz MPA, Viñes F, Papp C, Görling A, Steinrück HP (2011) J Phys Chem Lett 2:759CrossRefGoogle Scholar
  10. 10.
    Bianchini F, Patera LL, Peressi M, Africh C, Comelli G (2014) J Phys Chem Lett 5:467CrossRefGoogle Scholar
  11. 11.
    Shon NH, Ando T (1998) J Phys Soc Jpn 67:2421CrossRefGoogle Scholar
  12. 12.
    Ando T, Zheng Y, Suzuura H (2002) J Phys Soc Jpn 71:1318CrossRefGoogle Scholar
  13. 13.
    Uchoa B, Lin CY, Neto ACH (2008) Phys Rev B 77:035420CrossRefGoogle Scholar
  14. 14.
    Kozlov SM, Viñes F, Görling A (2012) J Phys Chem C 116:7360CrossRefGoogle Scholar
  15. 15.
    Gebhardt J, Viñes F, Görling A (2012) Phys Rev B 86:195431CrossRefGoogle Scholar
  16. 16.
    Varykhalov A, Marchenko D, Sánchez-Barriga J, Scholz MR, Verberck B, Trauzettel B, Wehling TO, Laubschat C (2008) Phys Rev X 2:107602Google Scholar
  17. 17.
    Mura M, Gulans A, Thonhauser T, Kantorovich L (2010) Phys Chem Chem Phys 12:4759CrossRefGoogle Scholar
  18. 18.
    Sony P, Puschnig P, Nabok D, Ambrosch-Draxl C (2007) Phys Rev Lett 99:176401CrossRefGoogle Scholar
  19. 19.
    Janthon P, Kozlov SM, Viñes F, Limtrakul J, Illas F (2013) J Chem Theory Comput 9:1631CrossRefGoogle Scholar
  20. 20.
    Fuentes-Cabrera M, Baskes MI, Melechko AV, Simpson ML (2008) Phys Rev B 77:035405CrossRefGoogle Scholar
  21. 21.
    Andersen M, Hornekaer L, Hammer B (2012) Phys Rev B 86:085405CrossRefGoogle Scholar
  22. 22.
    Janthon P, Luo S, Kozlov SM, Viñes F, Limtrakul J, Truhlar DG, Illas F (2014) J Chem Theory Comput 10:3832CrossRefGoogle Scholar
  23. 23.
    Mittendorfer F, Garhofer A, Redinger J, Kilmeš J, Harl J, Kresse G (2011) Phys Rev B 84:201401CrossRefGoogle Scholar
  24. 24.
    Zhang WB, Chen C, Tang PY (2014) J Chem Phys 141:044708CrossRefGoogle Scholar
  25. 25.
    Grimme S (2006) J Comput Chem 27:1787CrossRefGoogle Scholar
  26. 26.
    Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:073005CrossRefGoogle Scholar
  27. 27.
    Perdew JP, Burke K (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  28. 28.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  29. 29.
    Note that PAW pseudopotentials released in VASP 5.2 version were used for TS related DFT-D correctionsGoogle Scholar
  30. 30.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  31. 31.
    Blöchl PE, Jepsen O, Andersen OK (1994) Phys Rev B 49:16223CrossRefGoogle Scholar
  32. 32.
    Grimme S, Antony J, Ehrlich S, Krieg S (2010) J Chem Phys 132:154104CrossRefGoogle Scholar
  33. 33.
    Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456CrossRefGoogle Scholar
  34. 34.
    Andersson MP (2013) J Theo Chem 2013:327839Google Scholar
  35. 35.
    Bučko T, Lebègue S, Hafner J, Ángyán JG (2013) Phys Rev B 87:064110CrossRefGoogle Scholar
  36. 36.
    Ambrosetti A, Reilly AM, DiStasio RA Jr, Tkatchenko A (2014) J Chem Phys 140:18A508CrossRefGoogle Scholar
  37. 37.
    Ruiz V, Liu W, Zojer E, Scheffler M, Tkatchenko A (2012) Phys Rev Lett 108:146103CrossRefGoogle Scholar
  38. 38.
    For Ni, C6, α, and R0 values are 59, 10.2, and 2.28 atomic units, respectivelyGoogle Scholar
  39. 39.
    Grimme S (2011) WIREs Comput Mol Sci 1:211CrossRefGoogle Scholar
  40. 40.
    Gamo Y, Nagashima A, Wakabayashi M, Terai M, Oshima C (1997) Surf Sci 374:61CrossRefGoogle Scholar
  41. 41.
    Shelton JC, Patil HR, Blakely JM (1974) Surf Sci 43:493CrossRefGoogle Scholar
  42. 42.
    Zacharia R, Ulbricht H, Hertel T (2004) Phys Rev B 69:155406CrossRefGoogle Scholar
  43. 43.
    As for bulk Ni, a 7×7×7 k-points grid was used in these calculationsGoogle Scholar
  44. 44.
    Gao W, Tkatchenko A (2015) Phys Rev Lett 114:096101CrossRefGoogle Scholar
  45. 45.
    Bučko T, Lebègue S, Gould T, Ángyán JG (2016) J Phys: Condens Matter 28:045201Google Scholar
  46. 46.
    Olsen T, Thygesen KS (2012) Phys Rev B 87:075111CrossRefGoogle Scholar
  47. 47.
    Grüneis A (2013) J Phys: Condens Matter 25:043001Google Scholar
  48. 48.
    Silvestrelli PL, Ambrosetti A (2015) Phys Rev B 91:195405CrossRefGoogle Scholar
  49. 49.
    Li X, Feng J, Wang E, Meng S, Kilmeš J, Michaelides A (2012) Phys Rev B 85:085425CrossRefGoogle Scholar
  50. 50.
    Hamada I (2014) Phys Rev B 89:121103CrossRefGoogle Scholar
  51. 51.
    Becke AD (1986) J Chem Phys 85:7184CrossRefGoogle Scholar
  52. 52.
    Wellendorff J, Lundgaard KT, Mogelhoj A, Petzold V, Landis DD, Nørskov JK, Bligaard T, Jacobsen KW (2012) Phys Rev B 85:235149CrossRefGoogle Scholar
  53. 53.
    Klimeš J, Bowler DR, Michaelides A (2011) Phys Rev B 83:195131CrossRefGoogle Scholar
  54. 54.
    Klimeš J, Bowler DR, Michaelides A (2012) J Phys: Condens Matter 22:022201Google Scholar
  55. 55.
    Hasegawa M, Nishidate K, Hosokai T, Yoshimoto N (2013) Phys Rev B 87:085439CrossRefGoogle Scholar
  56. 56.
    Zhang WB, Chen C, Tang PY (2014) J Chem Phys 141:044708CrossRefGoogle Scholar
  57. 57.
    Vanin M, Mortensen JJ, Kelkkanen AK, Garcia-Lastra JM, Thygesen KS, Jacobsen KW (2010) Phys Rev B 81:081408CrossRefGoogle Scholar
  58. 58.
    Hamada I, Otani M (2010) Phys Rev B 82:153412CrossRefGoogle Scholar
  59. 59.
    Sun J, Entani S, Fang Y, Haunschild R, Perdew P (2013) Phys Rev Lett 111:106401CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Helena Muñoz-Galán
    • 1
  • Francesc Viñes
    • 1
  • Julian Gebhardt
    • 2
  • Andreas Görling
    • 2
  • Francesc Illas
    • 1
  1. 1.Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB)Universitat de BarcelonaBarcelonaSpain
  2. 2.Lehrstuhl für Theoretische ChemieUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations