The absorption and emission spectra in solution of oligothiophene-based push–pull biomarkers: a PCM/TD-DFT vibronic study

Regular Article
Part of the following topical collections:
  1. Health & Energy from the Sun: a Computational Perspective

Abstract

We here report a thorough quantum mechanical study of the optical properties of several N-succinimidyl-ester and methyl-amide derivatives of bi- and terthiophene, which have shown promising performances as biomarkers. We study in particular the dependence of the absorption and emission spectra on the substituents and on the nature of the embedding medium, from the gas phase to polar solvents. Our approach is based on time-dependent density functional theory calculations, by comparing the performances of different functionals and, finally, using long-range-corrected CAM-B3LYP as reference functional. Solvent effects are included by the Polarizable Continuum Model, exploiting both its linear response and state-specific implementations. In order to simulate the absorption spectra at room temperature, a hybrid quantum/classical approach is adopted where the broadening effects due to the torsional flexibility of the system are taken into account within the classical Franck–Condon principle, starting from a relaxed three-dimensional potential energy surface, while the quantum vibronic contribution of the remaining degrees of freedom is described in harmonic approximation according to a time-dependent approach. The theoretical predictions are in good agreement with experiments, providing interesting indications on the accuracy of different functionals and on the main chemical-physical effects modulating the excited state properties of these compounds.

Keywords

Optical spectra Solution Vibrational calculations TD-DFT 

Notes

Acknowledgments

ES and RI thank MIUR (FIRB’Futuro in Ricerca RBFR08DUX6-003) for financial support.

Supplementary material

214_2016_1899_MOESM1_ESM.docx (5.5 mb)
Supplementary material 1 (DOCX 5649 kb)

References

  1. 1.
    Fichou D (1999) Handbook of oligo- and polythiophenes. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Murphy AR, Fréchet JMJ (2007) Chem Rev 107:1066–1096CrossRefGoogle Scholar
  3. 3.
    Perepichka IF, Perepichka DF (eds) (2009) Handbook of thiophene-based materials: applications in organic electronics and photonics. Wiley, ChichesterGoogle Scholar
  4. 4.
    Chen Y, Wan X, Long G (2013) Acc Chem Res 46:2645–2655CrossRefGoogle Scholar
  5. 5.
    Zade SS, Zamoshchik N, Bendikov M (2011) Acc Chem Res 44:14–24CrossRefGoogle Scholar
  6. 6.
    Gierschner J, Cornil J, Egelhaaf HJ (2007) Adv Mater 19:173–191CrossRefGoogle Scholar
  7. 7.
    Becker RS, de Melo JS, Maçanita AL, Elisei F (1996) J Phys Chem 100:18683–18695CrossRefGoogle Scholar
  8. 8.
    Gierschner J, Mack HG, Egelhaaf HJ, Schweizer S, Doser B, Oelkrug D (2003) Synth Met 138:311–315CrossRefGoogle Scholar
  9. 9.
    Wykes M, Milian-Medina B, Gierschner J (2013) Front Chem.\ 1:35Google Scholar
  10. 10.
    Stendardo E, Avila Ferrer FJ, Santoro F, Improta R (2012) J Chem Theory Comput 8:4483–4493CrossRefGoogle Scholar
  11. 11.
    Improta R, Avila Ferrer FJ, Stendardo E, Santoro F (2014) ChemPhysChem 15:3320–3333CrossRefGoogle Scholar
  12. 12.
    Milian-Medina B, Gierschner J (2012) WIREs Comput Mol Sci 2:513–524CrossRefGoogle Scholar
  13. 13.
    Tamura H, Burghardt I (2013) J Am Chem Soc 135:16364–16367CrossRefGoogle Scholar
  14. 14.
    Zambianchi M, Maria FD, Cazzato A, Gigli G, Piacenza M, Sala FD, Barbarella G (2009) J Am Chem Soc 131:10892–10900CrossRefGoogle Scholar
  15. 15.
    Piacenza M, Zambianchi M, Barbarella G, Gigli G, Della Sala F (2008) Phys Chem Chem Phys 10:5363–5373CrossRefGoogle Scholar
  16. 16.
    Casida ME (1995) In: Chong DP (ed) Recent advances in density functional methods, vol I. World Scientific, SingaporeGoogle Scholar
  17. 17.
    Burke K, Werschnik J, Gross EKU (2005) J Chem Phys 123:062206CrossRefGoogle Scholar
  18. 18.
    Dreuw A, Head-Gordon M (2005) Chem Rev 105:4009–4037CrossRefGoogle Scholar
  19. 19.
    Grimme S, Neese F (2007) J Chem Phys 127:154116CrossRefGoogle Scholar
  20. 20.
    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  21. 21.
    Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029–5036CrossRefGoogle Scholar
  22. 22.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  23. 23.
    Peach MJG, Helgaker T, Salek P, Keal TW, Lutnaes OB, Tozer DJ, Handy NC (2006) Phys Chem Chem Phys 8:558–562CrossRefGoogle Scholar
  24. 24.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167CrossRefGoogle Scholar
  25. 25.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  26. 26.
    Miertuš S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129CrossRefGoogle Scholar
  27. 27.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094CrossRefGoogle Scholar
  28. 28.
    Cossi M, Barone V (2001) J Chem Phys 115:4708–4717CrossRefGoogle Scholar
  29. 29.
    Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) J Chem Phys 124:94107CrossRefGoogle Scholar
  30. 30.
    Improta R, Barone V, Scalmani G, Frisch MJ (2006) J Chem Phys 125:054103CrossRefGoogle Scholar
  31. 31.
    Improta R, Scalmani G, Frisch MJ, Barone V (2007) J Chem Phys 127:074504CrossRefGoogle Scholar
  32. 32.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  33. 33.
    Improta R, Barone V, Santoro F (2007) Angew Chem Int Ed 46:405–408CrossRefGoogle Scholar
  34. 34.
    Improta R, Barone V, Santoro F (2007) J Phys Chem B 111:14080–14082CrossRefGoogle Scholar
  35. 35.
    Santoro F, Improta R, Lami A, Bloino J, Barone V (2007) J Chem Phys 126:084509CrossRefGoogle Scholar
  36. 36.
    Santoro F, Lami A, Improta R, Barone V (2007) J Chem Phys 126:184102CrossRefGoogle Scholar
  37. 37.
    Santoro F, Lami A, Improta R, Bloino J, Barone V (2008) J Chem Phys 128:224311CrossRefGoogle Scholar
  38. 38.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision B.01. Gaussian, Inc., Wallingford CTGoogle Scholar
  40. 40.
    Biczysko M, Bloino J, Santoro F, Barone V (2012) Time-independent approaches to simulate electronic spectra lineshapes: from small molecules to macrosystems. In: Barone V (ed) Computational strategies for spectroscopy: from small molecules to nanosystems. Wiley, Chichester, pp 361–443Google Scholar
  41. 41.
    Avila Ferrer FJ, Cerezo J, Soto J, Improta R, Santoro F (2014) Comput Theor Chem 1040–1041:328CrossRefGoogle Scholar
  42. 42.
    Baiardi A, Bloino J, Barone V (2013) J Chem Theory Comput 9:4097–4115CrossRefGoogle Scholar
  43. 43.
    Huh J, Berger R (2012) J Phys Conf Ser 380:012019CrossRefGoogle Scholar
  44. 44.
    Peng Q, Niu Y, Deng C, Shuai Z (2010) Chem Phys 370:215–222CrossRefGoogle Scholar
  45. 45.
    Santoro F, FCclasses, a Fortran 77 code, development version. The standard version of the code can be downloaded at http://www.pi.iccom.cnr.it/fcclasses, last accessed 5 April 2016. To use the development version, necessary to run TD calculations (see ref. Cerezo J, Santoro F (2013) TDspectrum, a routine for TD calculations within FCclasses)
  46. 46.
    Cerezo J, Santoro F (2013) TDspectrum, a routine for TD calculations within FCclassesGoogle Scholar
  47. 47.
    Avila Ferrer FJ, Cerezo J, Stendardo E, Improta R, Santoro F (2013) J Chem Theory Comput 9:2072–2082CrossRefGoogle Scholar
  48. 48.
    Avila Ferrer FJ, Santoro F (2012) Phys Chem Chem Phys 14:13549–13563CrossRefGoogle Scholar
  49. 49.
    Takayanagi M, Gejo T, Hanazaki I (1994) J Phys Chem 98:12893–12898CrossRefGoogle Scholar
  50. 50.
    Belletete M, Leclerc M, Durocher G (1994) J Phys Chem 98:9450–9456CrossRefGoogle Scholar
  51. 51.
    Hattig C, Weigend F (2000) J Chem Phys 113:5154–5161CrossRefGoogle Scholar
  52. 52.
    Fabiano E, Della Sala F, Barbarella G, Lattante S, Anni M, Sotgiu G, Hattig C, Cingolani R, Gigli G (2006) J Phys Chem B 110:18651CrossRefGoogle Scholar
  53. 53.
    Fabiano E, Della Sala F, Barbarella G, Lattante S, Anni M, Sotgiu G, Hattig C, Cingolani R, Gigli G (2006) J Phys Chem B 111:490Google Scholar
  54. 54.
    Barbarella G, Zambianchi M, Ventola A, Fabiano E, DellaSala F, Gigli G, Anni M, Bolognesi A, Polito L, Naldi M, Capobianco M (2006) Bioconjug Chem 17:58–67CrossRefGoogle Scholar
  55. 55.
    Avila Ferrer FJ, Improta R, Santoro F, Barone V (2011) Phys Chem Chem Phys 13:17007–17012CrossRefGoogle Scholar
  56. 56.
    Cerezo J, Avila Ferrer FJ, Prampolini G, Santoro F (2015) J Chem Theory Comput 11:5810–5825CrossRefGoogle Scholar
  57. 57.
    Zalenśy R, Murugan NA, Gelmukhanov F, Rinkevicius Z, Ośmialowski B, Bartkowiak W, Agren H (2015) J Phys Chem A 119:5145–5152Google Scholar
  58. 58.
    Petrone A, Cerezo J, Avila Ferrer FJ, Donati G, Improta R, Rega N, Santoro F (2015) J Phys Chem A 119:5426–5438CrossRefGoogle Scholar
  59. 59.
    D’Abramo M, Aschi M, Amadei A (2014) J Chem Phys 140:164104CrossRefGoogle Scholar
  60. 60.
    Benassi E, Cappelli C, Carlotti B, Barone V (2014) Phys Chem Chem Phys 16:26963–26973CrossRefGoogle Scholar
  61. 61.
    Sjöqvist J, González-Cano RC, López Navarrete JT, Casado J, Ruiz Delgado MC, Linares M, Norman P (2014) Phys Chem Chem Phys 16:24841–24852CrossRefGoogle Scholar
  62. 62.
    Cerezo J, Avila Ferrer FJ, Santoro F (2015) Phys Chem Chem Phys 17:11401–11411CrossRefGoogle Scholar
  63. 63.
    Improta R (2012) UV-visible absorption and emission energies in condensed phase by PCM-TD-DFT methods. In: Barone V (ed) Computational strategies for spectroscopy: from small molecules to nanosystems. Wiley, Chichester, pp 39–76Google Scholar
  64. 64.
    Improta R (2008) Phys Chem Chem Phys 10:2656–2664CrossRefGoogle Scholar
  65. 65.
    Biemann L, Kovalenko SA, Kleinermanns K, Mahrwald R, Markert M (2009) J Am Chem Soc 133:19664–19667CrossRefGoogle Scholar
  66. 66.
    Dargiewicz M, Biczysko M, Improta R, Barone V (2012) Phys Chem Chem Phys 14:8981–8989CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.CNR—Consiglio Nazionale delle RicercheIstituto di Biostrutture Biommagini (IBB-CNR)NaplesItaly
  2. 2.Physical Chemistry, Faculty of ScienceUniversity of MálagaMálagaSpain
  3. 3.CNR—Consiglio Nazionale delle RicercheIstituto di Chimica dei Composti Organo Metallici (ICCOM-CNR)PisaItaly

Personalised recommendations