Competition between intramolecular hydrogen and pnictogen bonds in protonated systems

  • Goar Sánchez-Sanz
  • Cristina Trujillo
  • Ibon Alkorta
  • José Elguero
Regular Article

Abstract

A theoretical study of the competition between hydrogen (HB) and pnictogen bonds (ZB) in three different families of compounds, (Z)-1,2-disubstituted ethenes (Eth), 1,2-disubstituted benzenes (Phe) and 1,8-disubstituted naphthalenes (Naph), with a charged group, ZH3 + and a neutral one, Z′H2 (Z, Z′ = N, P, As) as interacting moieties, has been carried out. In those structures with a NH3 + motif, intramolecular hydrogen bond structures are minima while pnictogen interactions are transition states. The opposite is true for PH3 + and AsH3 + moieties. An analysis of isodesmic energies (E iso), interaction energies (E b) and deformation energies (E def) shows that in Eth derivatives, the most stable compound corresponds to P+–N ZB while in the Phe and Naph ones, the N+–N HB interaction presents the largest negative isodesmic energy. Also, Eth and Phe derivatives show negative E iso values for all the compounds under study; however, in some cases of Naph derivatives positive isodesmic energies have been found. The Atoms in Molecules (AIM) analysis of the electron density, natural bond orbital (NBO) second-order orbital energies and electron density shift maps (EDS) have been used to better understand these intramolecular interactions.

Keywords

Pnictogen bonds Non-covalent interactions MP2 Interaction energy Intramolecular interactions Hydrogen bonds 

Notes

Acknowledgments

We thank the Ministerio de Ciencia e Innovación (Project No. CTQ2015-63997-C2-2-P) and the Comunidad Autónoma de Madrid (Project FOTOCARBON, ref S2013/MIT-2841) for continuous support. Thanks are given to the CTI (CSIC), Irish Centre for High-End Computing (ICHEC) and the Trinity Center for High-Performance Computing (TCHPC) for the provision of computational facilities. G.S.-S. wants to thank to Human Frontier Science Program (Project Reference: LT001022/2013-C) for the support.

Supplementary material

214_2016_1895_MOESM1_ESM.doc (8.6 mb)
Supplementary material 1 (DOC 8763 kb)

References

  1. 1.
    Soriano-Correa C, Barrientos-Salcedo C, Campos-Fernández L, Alvarado-Salazar A, Esquivel RO (2015) Chem Phys 457:180–187CrossRefGoogle Scholar
  2. 2.
    Mulliken RS (1950) J Am Chem Soc 72:600–608CrossRefGoogle Scholar
  3. 3.
    Politzer P, Lane P, Concha M, Ma Y, Murray J (2007) J Mol Model 13:305–311CrossRefGoogle Scholar
  4. 4.
    Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114–6127CrossRefGoogle Scholar
  5. 5.
    Bauzá A, Mooibroek TJ, Frontera A (2015) ChemPhysChem 16:2496–2517CrossRefGoogle Scholar
  6. 6.
    Minyaev RM, Minkin VI (1998) Can J Chem 76:776–788CrossRefGoogle Scholar
  7. 7.
    Sanz P, Yáñez M, Mó O (2002) New J Chem 26:1747–1752CrossRefGoogle Scholar
  8. 8.
    Sanz P, Mó O, Yañez M (2003) Phys Chem Chem Phys 5:2942–2947CrossRefGoogle Scholar
  9. 9.
    Sanz P, Yáñez M, Mó O (2003) Chem Eur J 9:4548–4555CrossRefGoogle Scholar
  10. 10.
    Sánchez-Sanz G, Alkorta I, Elguero J (2011) Mol Phys 109:2543–2552CrossRefGoogle Scholar
  11. 11.
    Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2012) ChemPhysChem 13:496–503CrossRefGoogle Scholar
  12. 12.
    Klinkhammer KW, Pyykko P (1995) Inorg Chem 34:4134–4138CrossRefGoogle Scholar
  13. 13.
    Moilanen J, Ganesamoorthy C, Balakrishna MS, Tuononen HM (2009) Inorg Chem 48:6740–6747CrossRefGoogle Scholar
  14. 14.
    Scheiner S (2011) J Phys Chem A 115:11202–11209CrossRefGoogle Scholar
  15. 15.
    Scheiner S (2011) J Chem Phys 134:094315–094319CrossRefGoogle Scholar
  16. 16.
    Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Chem Eur J 17:6034–6038CrossRefGoogle Scholar
  17. 17.
    Bauzá A, Quiñonero D, Deyà PM, Frontera A (2012) Phys Chem Chem Phys 14:14061–14066CrossRefGoogle Scholar
  18. 18.
    Scheiner S (2012) Comput Theor Chem 998:9–13CrossRefGoogle Scholar
  19. 19.
    Adhikari U, Scheiner S (2012) Chem Phys Lett 536:30–33CrossRefGoogle Scholar
  20. 20.
    Adhikari U, Scheiner S (2012) J Phys Chem A 116:3487–3497CrossRefGoogle Scholar
  21. 21.
    Drago RS, Wong N, Ferris DC (1991) J Am Chem Soc 113:1970–1977CrossRefGoogle Scholar
  22. 22.
    Widhalm M, Kratky C (1992) Chem Ber 125:679–689CrossRefGoogle Scholar
  23. 23.
    Carré F, Chuit C, Corriu RJP, Monforte P, Nayyar NK, Reyé C (1995) J Organomet Chem 499:147–154CrossRefGoogle Scholar
  24. 24.
    Sundberg MR, Uggla R, Viñas C, Teixidor F, Paavola S, Kivekäs R (2007) Inorg Chem Commun 10:713–716CrossRefGoogle Scholar
  25. 25.
    Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292CrossRefGoogle Scholar
  26. 26.
    Politzer P, Murray J, Concha M (2008) J Mol Model 14:659–665CrossRefGoogle Scholar
  27. 27.
    Mohajeri A, Pakiari AH, Bagheri N (2009) Chem Phys Lett 467:393–397CrossRefGoogle Scholar
  28. 28.
    Buckingham AD, Fowler PW (1985) Can J Chem 63:2018–2025CrossRefGoogle Scholar
  29. 29.
    Legon AC, Millen DJ (1987) Chem Soc Rev 16:467–498CrossRefGoogle Scholar
  30. 30.
    Stone AJ, Price SL (1988) J Phys Chem 92:3325–3335CrossRefGoogle Scholar
  31. 31.
    Brinck T, Murray JS, Politzer P (1992) Int J Quant Chem 44:57–64CrossRefGoogle Scholar
  32. 32.
    Burling FT, Goldstein BM (1992) J Am Chem Soc 114:2313–2320CrossRefGoogle Scholar
  33. 33.
    Price SL (1996) J Chem Soc Faraday Trans 92:2997–3008CrossRefGoogle Scholar
  34. 34.
    Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci USA 101:16789–16794CrossRefGoogle Scholar
  35. 35.
    Awwadi FF, Willett RD, Peterson KA, Twamley B (2006) Chem Eur J 12:8952–8960CrossRefGoogle Scholar
  36. 36.
    Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comput Theor Chem 998:2–8CrossRefGoogle Scholar
  37. 37.
    Hennemann M, Murray J, Politzer P, Riley K, Clark T (2012) J Mol Model 18:2461–2469CrossRefGoogle Scholar
  38. 38.
    Clark T (2013) WIREs Comput Mol Sci 3:13–20CrossRefGoogle Scholar
  39. 39.
    Politzer P, Murray JS (2013) ChemPhysChem 14:278–294CrossRefGoogle Scholar
  40. 40.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2012) J Phys Chem A 116:3056–3060CrossRefGoogle Scholar
  41. 41.
    Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2012) J Chem Theor Comput 8:2320–2327CrossRefGoogle Scholar
  42. 42.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2011) J Phys Chem A 115:13724–13731CrossRefGoogle Scholar
  43. 43.
    Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2013) J Phys Chem A 117:193–194Google Scholar
  44. 44.
    Bauzá A, Alkorta I, Frontera A, Elguero J (2013) J Chem Theor Comput 9:5201–5210CrossRefGoogle Scholar
  45. 45.
    Alkorta I, Elguero J, Del Bene JE (2013) J Phys Chem A 117:10497–10503CrossRefGoogle Scholar
  46. 46.
    Del Bene JE, Alkorta I, Elguero J (2013) J Phys Chem A 117:6893–6903CrossRefGoogle Scholar
  47. 47.
    Alkorta I, Elguero J, Solimannejad M (2014) J Phys Chem A 118:947–953CrossRefGoogle Scholar
  48. 48.
    Sánchez-Sanz G, Trujillo C, Solimannejad M, Alkorta I, Elguero J (2013) Phys Chem Chem Phys 15:14310–14318CrossRefGoogle Scholar
  49. 49.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2013) J Phys Chem A 117:3133–3141CrossRefGoogle Scholar
  50. 50.
    Solimannejad M, Ramezani V, Trujillo C, Alkorta I, Sánchez-Sanz G, Elguero J (2012) J Phys Chem A 116:5199–5206CrossRefGoogle Scholar
  51. 51.
    Sánchez-Sanz G, Alkorta I, Trujillo C, Elguero J (2013) ChemPhysChem 14:1656–1665CrossRefGoogle Scholar
  52. 52.
    Sanchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2016) Phys Chem Chem Phys 18:9148–9160CrossRefGoogle Scholar
  53. 53.
    An X-L, Li R, Li Q-Z, Liu X-F, Li W-Z, Cheng J-B (2012) J Mol Model 18:1–8CrossRefGoogle Scholar
  54. 54.
    Scheiner S (2013) Acc Chem Res 46:280–288CrossRefGoogle Scholar
  55. 55.
    Ghosh S, Biswas S, Bauzá A, Barceló-Oliver M, Frontera A, Ghosh A (2013) Inorg Chem 52:7508–7523CrossRefGoogle Scholar
  56. 56.
    Politzer P, Murray JS, Janjić GV, Zarić SD (2014) Crystals 4:12–31CrossRefGoogle Scholar
  57. 57.
    Setiawan D, Kraka E, Cremer D (2014) Chem Phys Lett 614:136–142CrossRefGoogle Scholar
  58. 58.
    Setiawan D, Kraka E, Cremer D (2015) J Phys Chem A 119:1642–1656CrossRefGoogle Scholar
  59. 59.
    Zhao Q (2016) J Mol Model 22:1–7CrossRefGoogle Scholar
  60. 60.
    Esrafili MD, Mohammadian-Sabet F (2015) Chem Phys Lett 638:122–127CrossRefGoogle Scholar
  61. 61.
    Grabowski SJ (2013) Chem Eur J 19:14600–14611CrossRefGoogle Scholar
  62. 62.
    Grabowski SJ (2014) ChemPhysChem 15:876–884CrossRefGoogle Scholar
  63. 63.
    Alkorta I, Elguero J, Grabowski SJ (2015) Phys Chem Chem Phys 17:3261–3272CrossRefGoogle Scholar
  64. 64.
    Del Bene JE, Alkorta I, Elguero J (2015) J Phys Chem A 119:3125–3133CrossRefGoogle Scholar
  65. 65.
    Del Bene JE, Alkorta I, Elguero J (2015) J Phys Chem A 119:5853–5864CrossRefGoogle Scholar
  66. 66.
    Marín-Luna M, Alkorta I, Elguero J (2015) Struct Chem 26:639–645CrossRefGoogle Scholar
  67. 67.
    Ji LF, Li AY, Li ZZ (2015) Chem Phys Lett 619:115–121CrossRefGoogle Scholar
  68. 68.
    Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2014) Phys Chem Chem Phys 16:15900–15909CrossRefGoogle Scholar
  69. 69.
    Møller C, Plesset MS (1934) Phys Rev 46:618–622CrossRefGoogle Scholar
  70. 70.
    Del Bene JE (1993) J Phys Chem 97:107–110CrossRefGoogle Scholar
  71. 71.
    Woon DE, Dunning TH (1995) J Chem Phys 103:4572–4585CrossRefGoogle Scholar
  72. 72.
    Dunning TH (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  73. 73.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian 09, Revision d1, Inc., Wallingford CT, 2009Google Scholar
  74. 74.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, OxfordGoogle Scholar
  75. 75.
    Popelier PLA (2000) Atoms in molecules. An introduction. Prentice Hall, HarlowGoogle Scholar
  76. 76.
    Keith TA, Version 15.09.27 edn., 2015, pp. TK Gristmill Software(aim.tkgristmill.com)Google Scholar
  77. 77.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  78. 78.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  79. 79.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38CrossRefGoogle Scholar
  80. 80.
    Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2012) Comput Theor Chem 991:124–133CrossRefGoogle Scholar
  81. 81.
    Schiøtt B, Iversen BB, Madsen GKH, Larsen FK, Bruice TC (1998) Proc Natl Acad Sci 95:12799–12802CrossRefGoogle Scholar
  82. 82.
    Cleland W, Kreevoy M (1994) Science 264:1887–1890CrossRefGoogle Scholar
  83. 83.
    Day VW, Hossain MA, Kang SO, Powell D, Lushington G, Bowman-James K (2007) J Am Chem Soc 129:8692–8693CrossRefGoogle Scholar
  84. 84.
    Alkorta I, Elguero J, Grabowski SJ (2008) J Phys Chem A 112:2721–2727CrossRefGoogle Scholar
  85. 85.
    Bankiewicz B, Wojtulewski S, Grabowski SJ (2010) J Org Chem 75:1419–1426CrossRefGoogle Scholar
  86. 86.
    Poater J, Solà M, Bickelhaupt FM (2006) Chem Eur J 12:2902–2905CrossRefGoogle Scholar
  87. 87.
    Cremer D, Kraka E (1984) Croat Chem Acta 57:1259–1281Google Scholar
  88. 88.
    Jenkins S, Morrison I (2000) Chem Phys Lett 317:97–102CrossRefGoogle Scholar
  89. 89.
    Arnold WD, Oldfield E (2000) J Am Chem Soc 122:12835–12841CrossRefGoogle Scholar
  90. 90.
    Lane JR, Contreras-García J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) J Chem Theor Comput 9:3263–3266CrossRefGoogle Scholar
  91. 91.
    Del Bene JE, Alkorta I, Elguero J (2015) J Phys Chem A 119:224–233CrossRefGoogle Scholar
  92. 92.
    Llamas-Saiz AL, Foces-Foces C, Elguero J (1994) J Mol Struct 328:297–323CrossRefGoogle Scholar
  93. 93.
    Ozeryanskii VA, Pozharskii AF, Głowiak T, Majerz I, Sobczyk L, Grech E, Nowicka-Scheibe J (2002) J Mol Struct 607:1–8CrossRefGoogle Scholar
  94. 94.
    Pozharskii AF, Ozeryanskii VA (2012) Mendeleev Commun 22:117–124CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Goar Sánchez-Sanz
    • 1
  • Cristina Trujillo
    • 2
  • Ibon Alkorta
    • 3
  • José Elguero
    • 3
  1. 1.School of ChemistryUniversity College DublinBelfield, Dublin 4Ireland
  2. 2.School of Chemistry, Trinity Biomedical Sciences InstituteTrinity College DublinDublin 2Ireland
  3. 3.Instituto de Química MédicaCSICMadridSpain

Personalised recommendations