Advertisement

Noble gas endohedral fullerenes, Ng@C60 (Ng=Ar, Kr): a particular benchmark for assessing the account of non-covalent interactions by density functional theory calculations

  • Bogdan Frecus
  • Cristina M. Buta
  • Corneliu I. Oprea
  • Alessandro Stroppa
  • Mihai V. PutzEmail author
  • Fanica CimpoesuEmail author
Regular Article

Abstract

This work is dedicated to a special test, checking the capability of density functional theory computations in the account of long-range effects. The particular case of endohedral noble gas atoms in C60 fullerene puts several methodological challenges, such as the numeric problem in the balance of covalent versus non-covalent interactions. We designed a procedure based on the shifts of vibrational frequencies in C60 versus Ng@C60 couples. The energy scale of the investigated vibrations is comparable to that of the extracted van der Waals interaction parameters, achieving then a well-tempered description. A phenomenological model, based on transparent analytical formulas of the totally symmetric modes, is outlined and used to assess the computational results on series of functionals belonging to different classes (genuine forms, long-range corrected and with empiric dispersion ingredients). While the vast majority of the tested functionals undergo failures, good results are obtained for some long-range-corrected functionals (LC-BLYP and LC-wPBE), which follow the Tsuneda and Hirao’s scheme, provided that richer basis sets (with diffuse components) are used. Successes are obtained also for the Grimme B97D functional, when coupled with the D2 and D3 dispersion scheme, the results being rather independent from the basis set, as expected from the empirical nature of this type of amendment.

Keywords

Density functional theory Long-range effects Non-covalent interactions Vibration Hamiltonian Endohedral fullerenes 

Notes

Acknowledgments

The authors acknowledge financial support from the Romanian Ministry of Education and Research through the UEFISCDI/CNCS research grant PN2-ID-PCE-14/2013. FC and AS acknowledge travel grant support from Roumanian Academy and CNR Italy.

Supplementary material

214_2016_1883_MOESM1_ESM.doc (472 kb)
Supplementary material 1 (DOC 472 kb)

References

  1. 1.
    Hohenberg P, Kohn W (1964) Phys Rev B 136:864CrossRefGoogle Scholar
  2. 2.
    Kohn W, Sham LJ (1965) Phys Rev A 140:1133CrossRefGoogle Scholar
  3. 3.
    Leininger T, Stoll H, Werner H-J, Savin A (1887) Chem Phys Lett 275:151CrossRefGoogle Scholar
  4. 4.
    Kohn W, Meir Y, Makarov DE (1998) Phys Rev Lett 80:4153CrossRefGoogle Scholar
  5. 5.
    Mourik TV, Gdanitz RJ (2002) J Chem Phys 116:9620CrossRefGoogle Scholar
  6. 6.
    Andersson Y, Langreth DC, Lundqvist BI (1996) Phys Rev Lett 76:102CrossRefGoogle Scholar
  7. 7.
    Goll E, Werner HJ, Stoll H, Leininger T, Gori-Giorgi P, Savin A (2006) Chem Phys 329:276CrossRefGoogle Scholar
  8. 8.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540CrossRefGoogle Scholar
  9. 9.
    Kamiya M, Tsuneda T, Hirao K (2002) J Chem Phys 117:6010CrossRefGoogle Scholar
  10. 10.
    Sato T, Tsuneda T, Hirao K (2005) Mol Phys 103:1151CrossRefGoogle Scholar
  11. 11.
    Tawada T, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425CrossRefGoogle Scholar
  12. 12.
    Gori-Giorgi P, Savin A (2006) Phys Rev A 73:032506CrossRefGoogle Scholar
  13. 13.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51CrossRefGoogle Scholar
  14. 14.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  15. 15.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  16. 16.
    Peverati R, Truhlar DG (2011) J Phys Chem Lett 2:2810CrossRefGoogle Scholar
  17. 17.
    Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456CrossRefGoogle Scholar
  18. 18.
    Grimme S (2004) J Comput Chem 25:1463CrossRefGoogle Scholar
  19. 19.
    Grimme S (2006) J Comput Chem 27:1787CrossRefGoogle Scholar
  20. 20.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRefGoogle Scholar
  21. 21.
    Austin A, Petersson G, Frisch MJ, Dobek FJ, Scalmani G, Throssell K (2012) J Chem Theory and Comput 8:4989CrossRefGoogle Scholar
  22. 22.
    Chai J-D, Head-Gordon M (2008) J Chem Phys 128:084106CrossRefGoogle Scholar
  23. 23.
    Savin A (1995) In: Chong DP (ed) Recent advances in density functional methods, Part I. Singapore, World Scientific, p 129CrossRefGoogle Scholar
  24. 24.
    Chiba M, Tsuneda T, Hirao K (2006) J Chem Phys 124:144106CrossRefGoogle Scholar
  25. 25.
    Cimpoesu F, Ito S, Shimotani H, Takagi H, Dragoe N (2001) Phys Chem Chem Phys 13:9609CrossRefGoogle Scholar
  26. 26.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  27. 27.
    Gaussian 09, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian, Inc., Wallingford CTGoogle Scholar
  28. 28.
    Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comp Chem 22:976CrossRefGoogle Scholar
  29. 29.
    Wolfram Research, Inc., Mathematica, version 5, Champaign, IL, USA (2003)Google Scholar
  30. 30.
    Eaton JW, Bateman D, Hauberg S, Wehbring R (2014) GNU Octave version 3.8.1 manual: a high-level interactive language for numerical computations. CreateSpace Independent Publishing Platform. ISBN 1441413006. http://www.gnu.org/software/octave/doc/interpreter/
  31. 31.
    Hirsch A (1993) Angew Chem Int Ed Engl 32:1138CrossRefGoogle Scholar
  32. 32.
    Fowler P (1991) Nature 350:20CrossRefGoogle Scholar
  33. 33.
    Poater J, Fradera X, Duran M, Solà M (2003) Chem Eur J 9:1113CrossRefGoogle Scholar
  34. 34.
    Slater JC (1974) The self-consistent field for molecules and solids, vol 4. McGraw-Hill, New YorkGoogle Scholar
  35. 35.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200CrossRefGoogle Scholar
  36. 36.
    Becke AD (1998) Phys Rev A 38:3098CrossRefGoogle Scholar
  37. 37.
    Perdew JP (1986) Phys Rev B 33:8822CrossRefGoogle Scholar
  38. 38.
    Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785CrossRefGoogle Scholar
  39. 39.
    Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109CrossRefGoogle Scholar
  40. 40.
    Heyd J, Scuseria GE, Ernzerhof M (2006) J Chem Phys 124:219906CrossRefGoogle Scholar
  41. 41.
    Henderson TM, Izmaylov AF, Scalmani G, Scuseria GE (2009) J Chem Phys 131:044108CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Bogdan Frecus
    • 1
  • Cristina M. Buta
    • 1
  • Corneliu I. Oprea
    • 2
  • Alessandro Stroppa
    • 3
  • Mihai V. Putz
    • 4
    • 5
    Email author
  • Fanica Cimpoesu
    • 1
    Email author
  1. 1.Department of Theoretical ChemistryInstitute of Physical ChemistryBucharestRomania
  2. 2.Department of PhysicsOvidius University of ConstanţaConstanţaRomania
  3. 3.SPIN Institute of Consiglio Nazionale delle RicercheL’AquilaItaly
  4. 4.Department of Biology and Chemistry, Laboratory of Structural and Computational Physical-Chemistry for Nanosciences and QSARWest University of TimisoaraTimisoaraRomania
  5. 5.R&D National Institute for Electrochemistry and Condensed MatterTimisoaraRomania

Personalised recommendations