Conformational free energy surfaces of non-ionized glycine in aqueous solution

  • Manik Kumer Ghosh
  • Tae Hoon ChoiEmail author
  • Cheol Ho ChoiEmail author
Regular Article


Ab initio calculations on glycine and quantum mechanical/molecular mechanical molecular dynamics simulations (QM/MM-MD) on solvated non-ionized glycine were performed to explore the free energy landscapes of non-ionic glycine conformers in aqueous solution. Among nine different conformers of glycine, QM/MM-MD simulations found ttc and gtc conformers stable in addition to ttt, ccc, gtt, tct and gct which were well known as stable isomers in pure QM calculation. The stabilities of ttc and gtc come from a strong solvation at their carboxylic group side (–COOH) in solution. The preferred rotation along C–C (φ) as compared to C–O (θ) in both pure QM calculations and QM/MM-MD indicates the importance of intramolecular effects in determining relative free energies. On the other hand, the existence of stable ttc and gtc conformers only in solution phase clearly shows the importance of intermolecular interaction by explicit solvents. The same intermolecular interactions have a mixed effect on the free energy barriers. They reduced the barriers of A (ccc) → B (gtc) and A (ccc) → C (gct) isomerizations as compared to the ab initio or PCM results. At the same time, they also increased the barriers of B (ttc, gtc) → D (ttt, gtt). In short, the conformational free energy surfaces of non-ionized glycine in solution are largely different from the corresponding potential energy surfaces of gas phase. The fact that the initial conformer for tautomerization ccc is stable makes the N → Z tautomerization facile. However, concurrently, diverse conformational isomerizations to ccc make the tautomerization dependent on the isomerizations.


QM/MM-MD Glycine Free energy surface Conformational analysis Two-dimensional PMF 



This work was supported by a National Research Foundation Grant funded by the Korean government (MSIP) (Project Nos. 2007-0056095 and 2012M3C1A6035358).

Supplementary material

214_2016_1857_MOESM1_ESM.docx (712 kb)
Supplementary material 1 (DOCX 711 kb)


  1. 1.
    Wolfenden R, Andersson L, Cullis PM, Southgate CCB (1981) Affinities of amino acid side chains for solvent water. Biochemistry 20:849–855CrossRefGoogle Scholar
  2. 2.
    Balabin RM (2010) The first step in glycine solvation: the glycine–water complex. J Phys Chem B 114:15075–15078CrossRefGoogle Scholar
  3. 3.
    Kundrat MD, Autschbach J (2008) Ab initio and density functional theory modeling of the chiroptical response of glycine and alanine in solution using explicit solvation and molecular dynamics. J Chem Theory Comput 4:1902–1914CrossRefGoogle Scholar
  4. 4.
    Fernández-Ramos A, Smedarchina Z, Siebrand W, Zgierski MZ (2000) A direct-dynamics study of the zwitterion-to-neutral interconversion of glycine in aqueous solution. J Chem Phys 113:9714–9721CrossRefGoogle Scholar
  5. 5.
    Balta B, Aviyente V (2004) Solvent effects on glycine II. Water-assisted tautomerization. J Comput Chem 25:690–703CrossRefGoogle Scholar
  6. 6.
    Tian SX, Sun X, Cao R, Yang J (2009) Thermal stabilities of the microhydrated zwitterionic glycine: a kinetics and dynamics study. J Phys Chem A 113:480–483CrossRefGoogle Scholar
  7. 7.
    Balabin RM (2010) Conformational equilibrium in glycine: experimental jet-cooled raman spectrum. J Phys Chem Lett 1:20–23CrossRefGoogle Scholar
  8. 8.
    Barone V, Biczysko M, Bloino J, Puzzarini C (2013) Glycine conformers: a never-ending story? Phys Chem Chem Phys 15:1358–1363CrossRefGoogle Scholar
  9. 9.
    Bazsó G, Magyarfalvi G, Tarczay G (2012) Tunneling lifetime of the Ttc/VIp conformer of glycine in low-temperature matrices. J Phys Chem A 116:10539–10547CrossRefGoogle Scholar
  10. 10.
    Suenram RD, Lovas FJ (1978) Millimeter wave spectrum of glycine. J Mol Spectrosc 72:372–382CrossRefGoogle Scholar
  11. 11.
    Schäfer L, Sellers HL, Lovas FJ, Suenram RD (1980) Theory versus experiment: the case of glycine. J Am Chem Soc 102:6566–6568CrossRefGoogle Scholar
  12. 12.
    Suenram RD, Lovas FJ (1980) Millimeter wave spectrum of glycine. A new conformer. J Am Chem Soc 102:7180–7184CrossRefGoogle Scholar
  13. 13.
    Brown RD, Godfrey PD, Storey JWV, Bassez MP (1978) Microwave spectrum and conformation of glycine. J Chem Soc, Chem Commun 13:547–548CrossRefGoogle Scholar
  14. 14.
    Godfrey PD, Brown RD (1995) Shape of glycine. J Am Chem Soc 117:2019–2023CrossRefGoogle Scholar
  15. 15.
    Iijima K, Tanaka K, Onuma S (1991) Main conformer of gaseous glycine: molecular structure and rotational barrier from electron diffraction data and rotational constants. J Mol Struct 246:257–266CrossRefGoogle Scholar
  16. 16.
    Stepanian SG, Reva ID, Radchenko ED, Rosado MTS, Duarte MLTS, Fausto R, Adamowicz L (1998) Matrix-isolation infrared and theoretical studies of the glycine conformers. J Phys Chem A 102:1041–1054CrossRefGoogle Scholar
  17. 17.
    Császár AG (1992) Conformers of gaseous glycine. J Am Chem Soc 114:9568–9575CrossRefGoogle Scholar
  18. 18.
    Hu C, Shen M, Schaefer HF III (1993) Glycine conformational analysis. J Am Chem Soc 115:2923–2929CrossRefGoogle Scholar
  19. 19.
    Barone V, Adamo C, Lelj F (1995) Conformational behavior of gaseous glycine by a density functional approach. J Chem Phys 102:364CrossRefGoogle Scholar
  20. 20.
    Ding Y, Krogh-Jespersen K (1992) The glycine zwitterion does not exist in the gas phase: results from a detailed ab initio electronic structure study. Chem Phys Lett 199:261–266CrossRefGoogle Scholar
  21. 21.
    Yu D, Armstrong DA, Rauk A (1992) Hydrogen bonding and internal rotation barriers of glycine and its zwitterions (hypothetical) in the gas phase. Can J Chem 70:1762–1772CrossRefGoogle Scholar
  22. 22.
    Jensen JH, Gordon MS (1991) Conformational potential energy surface of glycine: a theoretical study. J Am Chem Soc 113:7917–7924CrossRefGoogle Scholar
  23. 23.
    Nguyen DT, Scheiner AC, Andzelm JW, Sirois S, Salahub DR, Hagler AT (1997) A density functional study of the glycine molecule: comparison with post-Hartree–Fock calculations and experiment. J Comput Chem 18:1609–1631CrossRefGoogle Scholar
  24. 24.
    Balta B, Basma M, Aviyente V, Zhu C, Lifshitz C (2000) Structures and reactivity of gaseous glycine and its derivatives. Int J Mass Spectrom 201:69–85CrossRefGoogle Scholar
  25. 25.
    Pacios LF, Gómez PC (2001) Intramolecular interactions and intramolecular hydrogen bonding in conformers of gaseous glycine. J Comput Chem 22:702–716CrossRefGoogle Scholar
  26. 26.
    Tortonda FR, Pascual-Ahuir JL, Silla E, Tuñón I (1996) Why is glycine a zwitterion in aqueous solution? A theoretical study of solvent stabilising factors. Chem Phys Lett 260:21–26CrossRefGoogle Scholar
  27. 27.
    Bonaccorsi R, Palla P, Tomasi J (1984) Conformational energy of glycine in aqueous solutions and relative stability of the zwitterionic and neutral forms. An ab initio study. J Am Chem Soc 106:1945–1950CrossRefGoogle Scholar
  28. 28.
    Kassab E, Langlet J, Evleth E, Akacem Y (2000) Theoretical study of solvent effect on intramolecular proton transfer of glycine. J Mol Struct (Theochem) 531:267–282CrossRefGoogle Scholar
  29. 29.
    Tuñón I, Silla E, Millot C, Martins-Costa MTC, Ruiz-López MF (1998) Intramolecular proton transfer of glycine in aqueous solution using quantum mechanics-molecular mechanics simulations. J Phys Chem A 102:8673–8678CrossRefGoogle Scholar
  30. 30.
    Bandyopadhyay P, Gordon MS, Menucci B, Tomasi J (2002) An integrated effective fragment—polarizable continuum approach to solvation: theory and application to glycine. J Chem Phys 116:5023–5032CrossRefGoogle Scholar
  31. 31.
    Senn HM, Margl PM, Schmid R, Ziegler T, Blöchl PE (2003) Ab initio molecular dynamics with a continuum solvation model. J Chem Phys 118:1089–1100CrossRefGoogle Scholar
  32. 32.
    Truong TN, Stefanovich EV (1995) Analytical first and second energy derivatives of the generalized conductorlike screening model for free energy of solvation. J Chem Phys 103:3709–3717CrossRefGoogle Scholar
  33. 33.
    Slifkin MA, Ali SM (1984) Thermodynamics properties of the activation glycine zwitterion protonation reaction. J Mol Liq 28:215–221CrossRefGoogle Scholar
  34. 34.
    Tortonda FR, Pascual-Ahuir JL, Silla E, Tuñón I (2003) A theoretical study of solvent effects on the conformational equilibria of neutral glycine in aqueous solution. J Mol Struct (Theochem) 623:203–210CrossRefGoogle Scholar
  35. 35.
    Selvarengan P, Kolandaivel P (2002) Studies of solvent effects on conformers of glycine molecule. J Mol Struct (Theochem) 617:99–106CrossRefGoogle Scholar
  36. 36.
    Gontrani L, Mennucci B, Tomasi J (2000) Glycine and alanine: a theoretical study of solvent effects upon energetics and molecular response properties. J Mol Struct (Theochem) 500:113–127CrossRefGoogle Scholar
  37. 37.
    Yoshida NO, Kataoka K, Nagaoka M, Yambe T (2000) Structure optimization via free energy gradient method: application to glycine zwitterion in aqueous solution. J Chem Phys 113:3519–3524CrossRefGoogle Scholar
  38. 38.
    Chakraborty D, Manogaran S (1998) Vibrational analysis of glycine zwitterion: an ab initio study. Chem Phys Lett 294:56–64CrossRefGoogle Scholar
  39. 39.
    Tortonda FR, Pascual-Ahuir J-L, Silla E, Tuñón I, Ramirez FJ (1998) Aminoacid zwitterions in solution: geometric, energetic, and vibrational analysis using density functional theory-continuum model calculations. J Chem Phys 109:592–602CrossRefGoogle Scholar
  40. 40.
    Aikens CM, Gordon MS (2006) Incremental solvation of nonionized and zwiterionic glycine. J Am Chem Soc 128:12835–12850CrossRefGoogle Scholar
  41. 41.
    Tuñón I, Silla E, Ruiz-López MF (2000) On the tautomerization process of glycine in aqueous solution. Chem Phys Lett 321:433–437CrossRefGoogle Scholar
  42. 42.
    Choi CH, Re S, Feig M, Sugita Y (2012) Quantum mechanical/effective fragment potential molecular dynamics (QM/EFP-MD) study on intra-molecular proton transfer of glycine in water. Chem Phys Lett 539:218–221CrossRefGoogle Scholar
  43. 43.
    Ghosh MK, Re S, Feig M, Sugita Y, Choi CH (2013) Interionic hydration structures of NaCl in aqueous solution: a combined study of quantum mechanical cluster calculations and QM/EFP-MD simulations. J Phys Chem B 117:289–295CrossRefGoogle Scholar
  44. 44.
    Choi CH, Re S, Rashid MHO, Li H, Feig M, Sugita Y (2013) Solvent electronic polarization effects on Na+–Na+ and Cl–Cl pair associations in aqueous solution. J Phys Chem B 117:9273–9279CrossRefGoogle Scholar
  45. 45.
    Ghosh MK, Choi TH, Choi CH (2015) Like-charge ion pairs of hydronium and hydroxide in aqueous solution? Phys Chem Chem Phys 17:16233–16237CrossRefGoogle Scholar
  46. 46.
    Ghosh MK, Choi JH, Choi CH, Cho M (2015) Ion pair structures in aqueous KSCN solution: classical and quantum mechanical/molecular mechanical molecular dynamics simulation study. Bull Korean Chem Soc 36:944–949Google Scholar
  47. 47.
    Ghosh MK, Uddin N, Choi CH (2012) Hydrophobic and hydrophilic associations of a methanol pair in aqueous solution. J Phys Chem B 116:14254–14260CrossRefGoogle Scholar
  48. 48.
    Uddin N, Choi TH, Choi CH (2013) Direct absolute pKa predictions and proton transfer mechanisms of small molecules in aqueous solution by QM/MM-MD. J Phys Chem B 117:6269–6275CrossRefGoogle Scholar
  49. 49.
    Uddin N, Kim J, Sung BJ, Choi TH, Choi CH, Kang H (2014) Comparative proton transfer efficiencies of hydronium and hydroxide in aqueous solution: proton transfer vs brownian motion. J Phys Chem B 118:13671–13678CrossRefGoogle Scholar
  50. 50.
    Ghosh MK, Lee J, Choi CH, Cho M (2012) Direct simulations of anharmonic infrared spectra using quantum mechanical/effective fragment potential molecular dynamics (QM/EFP-MD): methanol in water. J Phys Chem A 116:8965–8971CrossRefGoogle Scholar
  51. 51.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217CrossRefGoogle Scholar
  52. 52.
    Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1995) Multidimensional free-energy calculations using the weighted histogram analysis method. J Comput Chem 16:1339–1350CrossRefGoogle Scholar
  53. 53.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  54. 54.
    Balabin RM (2009) Conformational equilibrium in glycine: focal-point analysis and ab initio limit. Chem Phys Lett 479:195–200CrossRefGoogle Scholar
  55. 55.
    Kim CK, Park BH, Lee HW, Kim CK (2011) Comprehensive studies on the free energies of solvation and conformers of glycine: a theoretical study. Bull Korean Chem Soc 32:1985–1992CrossRefGoogle Scholar
  56. 56.
    Wei KH, Li R, Xin X, Jing YY (2010) Density functional theory study of 1:1 glycine-water complexes in the gas phase and in solution. Sci China Chem 53(2):383–395CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Chemistry and Green-Nano Materials Research Center, College of Natural SciencesKyungpook National UniversityTaeguRepublic of Korea
  2. 2.Department of Chemical Engineering EducationChungnam National UniversityDaejeonRepublic of Korea

Personalised recommendations